Abstract:This paper considers an active reconfigurable intelligent surface (RIS)-aided communication system, where an M-antenna base station (BS) transmits data symbols to a single-antenna user via an N-element active RIS. We use two-timescale channel state information (CSI) in our system, so that the channel estimation overhead and feedback overhead can be decreased dramatically. A closed-form approximate expression of the achievable rate (AR) is derived and the phase shift at the active RIS is optimized. In addition, we compare the performance of the active RIS system with that of the passive RIS system. The conclusion shows that the active RIS system achieves a lager AR than the passive RIS system.
Abstract:In this letter, we investigate a reconfigurable intelligent surfaces (RIS)-aided device to device (D2D) communication system over Rician fading channels with imperfect hardware including both hardware impairment at the transceivers and phase noise at the RISs. This paper has optimized the phase shift by a genetic algorithm (GA) method to maximize the achievable rate for the continuous phase shifts (CPSs) and discrete phase shifts (DPSs). We also consider the two special cases of no RIS hardware impairments (N-RIS-HWIs) and no transceiver hardware impairments (N-T-HWIs). We present closed-form expressions for the achievable rate of different cases and study the impact of hardware impairments on the communication quality. Finally, simulation results validate the analytic work.