Abstract:Federated Distillation (FD) offers an innovative approach to distributed machine learning, leveraging knowledge distillation for efficient and flexible cross-device knowledge transfer without necessitating the upload of extensive model parameters to a central server. While FD has gained popularity, its vulnerability to poisoning attacks remains underexplored. To address this gap, we previously introduced FDLA (Federated Distillation Logits Attack), a method that manipulates logits communication to mislead and degrade the performance of client models. However, the impact of FDLA on participants with different identities and the effects of malicious modifications at various stages of knowledge transfer remain unexplored. To this end, we present PCFDLA (Peak-Controlled Federated Distillation Logits Attack), an advanced and more stealthy logits poisoning attack method for FD. PCFDLA enhances the effectiveness of FDLA by carefully controlling the peak values of logits to create highly misleading yet inconspicuous modifications. Furthermore, we introduce a novel metric for better evaluating attack efficacy, demonstrating that PCFDLA maintains stealth while being significantly more disruptive to victim models compared to its predecessors. Experimental results across various datasets confirm the superior impact of PCFDLA on model accuracy, solidifying its potential threat in federated distillation systems.
Abstract:Federated Distillation (FD) is a novel and promising distributed machine learning paradigm, where knowledge distillation is leveraged to facilitate a more efficient and flexible cross-device knowledge transfer in federated learning. By optimizing local models with knowledge distillation, FD circumvents the necessity of uploading large-scale model parameters to the central server, simultaneously preserving the raw data on local clients. Despite the growing popularity of FD, there is a noticeable gap in previous works concerning the exploration of poisoning attacks within this framework. This can lead to a scant understanding of the vulnerabilities to potential adversarial actions. To this end, we introduce FDLA, a poisoning attack method tailored for FD. FDLA manipulates logit communications in FD, aiming to significantly degrade model performance on clients through misleading the discrimination of private samples. Through extensive simulation experiments across a variety of datasets, attack scenarios, and FD configurations, we demonstrate that LPA effectively compromises client model accuracy, outperforming established baseline algorithms in this regard. Our findings underscore the critical need for robust defense mechanisms in FD settings to mitigate such adversarial threats.
Abstract:As an emerging federated learning paradigm, federated distillation enables communication-efficient model training by transmitting only small-scale knowledge during the learning process. To further improve the communication efficiency of federated distillation, we propose a novel technique, ALU, which accumulates multiple rounds of local updates before transferring the knowledge to the central server. ALU drastically decreases the frequency of communication in federated distillation, thereby significantly reducing the communication overhead during the training process. Empirical experiments demonstrate the substantial effect of ALU in improving the communication efficiency of federated distillation.