Abstract:Existing research on non-line-of-sight (NLoS) ultraviolet (UV) channel modeling mainly focuses on scenarios where the signal propagation process is not affected by any obstacle and the radiation intensity (RI) of the light source is uniformly distributed. To eliminate these restrictions, we propose a single-collision model for the NLoS UV channel incorporating a cuboid-shaped obstacle, where the RI of the UV light source is modeled as the Lambertian distribution. For easy interpretation, we categorize the intersection circumstances between the receiver field-of-view and the obstacle into six cases and provide derivations of the weighting factor for each case. To investigate the accuracy of the proposed model, we compare it with the associated Monte Carlo photon tracing model via simulations and experiments. Results verify the correctness of the proposed model. This work reveals that obstacle avoidance is not always beneficial for NLoS UV communications and provides guidelines for relevant system design.
Abstract:We present an open-set logo detection (OSLD) system, which can detect (localize and recognize) any number of unseen logo classes without re-training; it only requires a small set of canonical logo images for each logo class. We achieve this using a two-stage approach: (1) Generic logo detection to detect candidate logo regions in an image. (2) Logo matching for matching the detected logo regions to a set of canonical logo images to recognize them. We also introduce a 'simple deep metric learning' (SDML) framework that outperformed more complicated ensemble and attention models and boosted the logo matching accuracy. Furthermore, we constructed a new open-set logo detection dataset with thousands of logo classes, and will release it for research purposes. We demonstrate the effectiveness of OSLD on our dataset and on the standard Flickr-32 logo dataset, outperforming the state-of-the-art open-set and closed-set logo detection methods by a large margin.
Abstract:Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies. Image registration for correlative microscopy is quite challenging because it is a multi-modal, multi-scale and multi-dimensional registration problem. In this report, I introduce two methods of image registration for correlative microscopy. The first method is based on fiducials (beads). I generate landmarks from the fiducials and compute the similarity transformation matrix based on three pairs of nearest corresponding landmarks. A least-squares matching process is applied afterwards to further refine the registration. The second method is inspired by the image analogies approach. I introduce the sparse representation model into image analogies. I first train representative image patches (dictionaries) for pre-registered datasets from two different modalities, and then I use the sparse coding technique to transfer a given image to a predicted image from one modality to another based on the learned dictionaries. The final image registration is between the predicted image and the original image corresponding to the given image in the different modality. The method transforms a multi-modal registration problem to a mono-modal one. I test my approaches on Transmission Electron Microscopy (TEM) and confocal microscopy images. Experimental results of the methods are also shown in this report.