Abstract:Deep reinforcement learning (RL) policies, although optimal in terms of task rewards, may not align with the personal preferences of human users. To ensure this alignment, a naive solution would be to retrain the agent using a reward function that encodes the user's specific preferences. However, such a reward function is typically not readily available, and as such, retraining the agent from scratch can be prohibitively expensive. We propose a more practical approach - to adapt the already trained policy to user-specific needs with the help of human feedback. To this end, we infer the user's intent through trajectory-level feedback and combine it with the trained task policy via a theoretically grounded dynamic policy fusion approach. As our approach collects human feedback on the very same trajectories used to learn the task policy, it does not require any additional interactions with the environment, making it a zero-shot approach. We empirically demonstrate in a number of environments that our proposed dynamic policy fusion approach consistently achieves the intended task while simultaneously adhering to user-specific needs.
Abstract:Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text. This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion. For example, by observing a partial stack of cubes, LLMs can predict the correct sequence in which the remaining cubes should be stacked by extrapolating the observed patterns (e.g., cube sizes, colors or other attributes) in the partial stack. In this work, we introduce LaGR (Language-Guided Reinforcement learning), which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent, in order to subsequently guide the latter's training. However, as RL training is generally not sample-efficient, deploying this approach would inherently imply that the LLM be repeatedly queried for solutions; a process that can be expensive and infeasible. To address this issue, we introduce SEQ (sample efficient querying), where we simultaneously train a secondary RL agent to decide when the LLM should be queried for solutions. Specifically, we use the quality of the solutions emanating from the LLM as the reward to train this agent. We show that our proposed framework LaGR-SEQ enables more efficient primary RL training, while simultaneously minimizing the number of queries to the LLM. We demonstrate our approach on a series of tasks and highlight the advantages of our approach, along with its limitations and potential future research directions.
Abstract:Autonomously learning diverse behaviors without an extrinsic reward signal has been a problem of interest in reinforcement learning. However, the nature of learning in such mechanisms is unconstrained, often resulting in the accumulation of several unusable, unsafe or misaligned skills. In order to avoid such issues and ensure the discovery of safe and human-aligned skills, it is necessary to incorporate humans into the unsupervised training process, which remains a largely unexplored research area. In this work, we propose Controlled Diversity with Preference (CDP), a novel, collaborative human-guided mechanism for an agent to learn a set of skills that is diverse as well as desirable. The key principle is to restrict the discovery of skills to those regions that are deemed to be desirable as per a preference model trained using human preference labels on trajectory pairs. We evaluate our approach on 2D navigation and Mujoco environments and demonstrate the ability to discover diverse, yet desirable skills.
Abstract:Simulation based learning often provides a cost-efficient recourse to reinforcement learning applications in robotics. However, simulators are generally incapable of accurately replicating real-world dynamics, and thus bridging the sim2real gap is an important problem in simulation based learning. Current solutions to bridge the sim2real gap involve hybrid simulators that are augmented with neural residual models. Unfortunately, they require a separate residual model for each individual environment configuration (i.e., a fixed setting of environment variables such as mass, friction etc.), and thus are not transferable to new environments quickly. To address this issue, we propose a Reverse Action Transformation (RAT) policy which learns to imitate simulated policies in the real-world. Once learnt from a single environment, RAT can then be deployed on top of a Universal Policy Network to achieve zero-shot adaptation to new environments. We empirically evaluate our approach in a set of continuous control tasks and observe its advantage as a few-shot and zero-shot learner over competing baselines.
Abstract:Sim2real transfer is primarily concerned with transferring policies trained in simulation to potentially noisy real world environments. A common problem associated with sim2real transfer is estimating the real-world environmental parameters to ground the simulated environment to. Although existing methods such as Domain Randomisation (DR) can produce robust policies by sampling from a distribution of parameters during training, there is no established method for identifying the parameters of the corresponding distribution for a given real-world setting. In this work, we propose Uncertainty-aware policy search (UncAPS), where we use Universal Policy Network (UPN) to store simulation-trained task-specific policies across the full range of environmental parameters and then subsequently employ robust Bayesian optimisation to craft robust policies for the given environment by combining relevant UPN policies in a DR like fashion. Such policy-driven grounding is expected to be more efficient as it estimates only task-relevant sets of parameters. Further, we also account for the estimation uncertainties in the search process to produce policies that are robust against both aleatoric and epistemic uncertainties. We empirically evaluate our approach in a range of noisy, continuous control environments, and show its improved performance compared to competing baselines.
Abstract:Adapting an agent's behaviour to new environments has been one of the primary focus areas of physics based reinforcement learning. Although recent approaches such as universal policy networks partially address this issue by enabling the storage of multiple policies trained in simulation on a wide range of dynamic/latent factors, efficiently identifying the most appropriate policy for a given environment remains a challenge. In this work, we propose a Gaussian Process-based prior learned in simulation, that captures the likely performance of a policy when transferred to a previously unseen environment. We integrate this prior with a Bayesian Optimisation-based policy search process to improve the efficiency of identifying the most appropriate policy from the universal policy network. We empirically evaluate our approach in a range of continuous and discrete control environments, and show that it outperforms other competing baselines.
Abstract:The optimistic nature of the Q-learning target leads to an overestimation bias, which is an inherent problem associated with standard $Q-$learning. Such a bias fails to account for the possibility of low returns, particularly in risky scenarios. However, the existence of biases, whether overestimation or underestimation, need not necessarily be undesirable. In this paper, we analytically examine the utility of biased learning, and show that specific types of biases may be preferable, depending on the scenario. Based on this finding, we design a novel reinforcement learning algorithm, Balanced Q-learning, in which the target is modified to be a convex combination of a pessimistic and an optimistic term, whose associated weights are determined online, analytically. We prove the convergence of this algorithm in a tabular setting, and empirically demonstrate its superior learning performance in various environments.
Abstract:Physics-based reinforcement learning tasks can benefit from simplified physics simulators as they potentially allow near-optimal policies to be learned in simulation. However, such simulators require the latent factors (e.g. mass, friction coefficient etc.) of the associated objects and other environment-specific factors (e.g. wind speed, air density etc.) to be accurately specified, without which, it could take considerable additional learning effort to adapt the learned simulation policy to the real environment. As such a complete specification can be impractical, in this paper, we instead, focus on learning task-specific estimates of latent factors which allow the approximation of real world trajectories in an ideal simulation environment. Specifically, we propose two new concepts: a) action grouping - the idea that certain types of actions are closely associated with the estimation of certain latent factors, and; b) partial grounding - the idea that simulation of task-specific dynamics may not need precise estimation of all the latent factors. We first introduce intuitive action groupings based on human physics knowledge and experience, which is then used to design novel strategies for interacting with the real environment. Next, we describe how prior knowledge of a task in a given environment can be used to extract the relative importance of different latent factors, and how this can be used to inform partial grounding, which enables efficient learning of the task in any arbitrary environment. We demonstrate our approach in a range of physics based tasks, and show that it achieves superior performance relative to other baselines, using only a limited number of real-world interactions.
Abstract:The recent successes of deep learning and deep reinforcement learning have firmly established their statuses as state-of-the-art artificial learning techniques. However, longstanding drawbacks of these approaches, such as their poor sample efficiencies and limited generalization capabilities point to a need for re-thinking the way such systems are designed and deployed. In this paper, we emphasize how the use of these learning systems, in conjunction with a specific variation of evolutionary algorithms could lead to the emergence of unique characteristics such as the automated acquisition of a variety of desirable behaviors and useful sets of behavior priors. This could pave the way for learning to occur in a generalized and continual manner, with minimal interactions with the environment. We discuss the anticipated improvements from such neuro-evolutionary frameworks, along with the associated challenges, as well as its potential for application to a number of research areas.
Abstract:Prior access to domain knowledge could significantly improve the performance of a reinforcement learning agent. In particular, it could help agents avoid potentially catastrophic exploratory actions, which would otherwise have to be experienced during learning. In this work, we identify consistently undesirable actions in a set of previously learned tasks, and use pseudo-rewards associated with them to learn a prior policy. In addition to enabling safe exploratory behaviors in subsequent tasks in the domain, these priors are transferable to similar environments, and can be learned off-policy and in parallel with the learning of other tasks in the domain. We compare our approach to established, state-of-the-art algorithms in a grid-world navigation environment, and demonstrate that it exhibits a superior performance with respect to avoiding unsafe actions while learning to perform arbitrary tasks in the domain. We also present some theoretical analysis to support these results, and discuss the implications and some alternative formulations of this approach, which could also be useful to accelerate learning in certain scenarios.