Abstract:Benefiting from cloud computing, today's early-stage quantum computers can be remotely accessed via the cloud services, known as Quantum-as-a-Service (QaaS). However, it poses a high risk of data leakage in quantum machine learning (QML). To run a QML model with QaaS, users need to locally compile their quantum circuits including the subcircuit of data encoding first and then send the compiled circuit to the QaaS provider for execution. If the QaaS provider is untrustworthy, the subcircuit to encode the raw data can be easily stolen. Therefore, we propose a co-design framework for preserving the data security of QML with the QaaS paradigm, namely PristiQ. By introducing an encryption subcircuit with extra secure qubits associated with a user-defined security key, the security of data can be greatly enhanced. And an automatic search algorithm is proposed to optimize the model to maintain its performance on the encrypted quantum data. Experimental results on simulation and the actual IBM quantum computer both prove the ability of PristiQ to provide high security for the quantum data while maintaining the model performance in QML.
Abstract:The continuous thriving of the Blockchain society motivates research in novel designs of schemes supporting cryptocurrencies. Previously multiple Proof-of-Deep-Learning(PoDL) consensuses have been proposed to replace hashing with useful work such as deep learning model training tasks. The energy will be more efficiently used while maintaining the ledger. However deep learning models are problem-specific and can be extremely complex. Current PoDL consensuses still require much work to realize in the real world. In this paper, we proposed a novel consensus named Proof-of-Federated-Learning-Subchain(PoFLSC) to fill the gap. We applied a subchain to record the training, challenging, and auditing activities and emphasized the importance of valuable datasets in partner selection. We simulated 20 miners in the subchain to demonstrate the effectiveness of PoFLSC. When we reduce the pool size concerning the reservation priority order, the drop rate difference in the performance in different scenarios further exhibits that the miner with a higher Shapley Value (SV) will gain a better opportunity to be selected when the size of the subchain pool is limited. In the conducted experiments, the PoFLSC consensus supported the subchain manager to be aware of reservation priority and the core partition of contributors to establish and maintain a competitive subchain.
Abstract:Given video data from multiple personal devices or street cameras, can we exploit the structural and dynamic information to learn dynamic representation of objects for applications such as distributed surveillance, without storing data at a central server that leads to a violation of user privacy? In this work, we introduce Federated Dynamic Graph Neural Network (Feddy), a distributed and secured framework to learn the object representations from multi-user graph sequences: i) It aggregates structural information from nearby objects in the current graph as well as dynamic information from those in the previous graph. It uses a self-supervised loss of predicting the trajectories of objects. ii) It is trained in a federated learning manner. The centrally located server sends the model to user devices. Local models on the respective user devices learn and periodically send their learning to the central server without ever exposing the user's data to server. iii) Studies showed that the aggregated parameters could be inspected though decrypted when broadcast to clients for model synchronizing, after the server performed a weighted average. We design an appropriate aggregation mechanism of secure aggregation primitives that can protect the security and privacy in federated learning with scalability. Experiments on four video camera datasets (in four different scenes) as well as simulation demonstrate that Feddy achieves great effectiveness and security.
Abstract:Biomedical image segmentation based on Deep neuralnetwork (DNN) is a promising approach that assists clin-ical diagnosis. This approach demands enormous com-putation power because these DNN models are compli-cated, and the size of the training data is usually very huge.As blockchain technology based on Proof-of-Work (PoW)has been widely used, an immense amount of computationpower is consumed to maintain the PoW consensus. Inthis paper, we propose a design to exploit the computationpower of blockchain miners for biomedical image segmen-tation, which lets miners perform image segmentation as theProof-of-Useful-Work (PoUW) instead of calculating use-less hash values. This work distinguishes itself from otherPoUW by addressing various limitations of related others.As the overhead evaluation shown in Section 5 indicates,for U-net and FCN, the average overhead of digital sig-nature is 1.25 seconds and 0.98 seconds, respectively, andthe average overhead of network is 3.77 seconds and 3.01seconds, respectively. These quantitative experiment resultsprove that the overhead of the digital signature and networkis small and comparable to other existing PoUW designs.