Abstract:Geological carbon and energy storage are pivotal for achieving net-zero carbon emissions and addressing climate change. However, they face uncertainties due to geological factors and operational limitations, resulting in possibilities of induced seismic events or groundwater contamination. To overcome these challenges, we propose a specialized machine-learning (ML) model to manage extensive reservoir models efficiently. While ML approaches hold promise for geological carbon storage, the substantial computational resources required for large-scale analysis are the obstacle. We've developed a method to reduce the training cost for deep neural operator models, using domain decomposition and a topology embedder to link spatio-temporal points. This approach allows accurate predictions within the model's domain, even for untrained data, enhancing ML efficiency for large-scale geological storage applications.
Abstract:Despite the potential of Machine learning (ML) to learn the behavior of malware, detect novel malware samples, and significantly improve information security (InfoSec) we see few, if any, high-impact ML techniques in deployed systems, notwithstanding multiple reported successes in open literature. We hypothesize that the failure of ML in making high-impacts in InfoSec are rooted in a disconnect between the two communities as evidenced by a semantic gap---a difference in how executables are described (e.g. the data and features extracted from the data). Specifically, current datasets and representations used by ML are not suitable for learning the behaviors of an executable and differ significantly from those used by the InfoSec community. In this paper, we survey existing datasets used for classifying malware by ML algorithms and the features that are extracted from the data. We observe that: 1) the current set of extracted features are primarily syntactic, not behavioral, 2) datasets generally contain extreme exemplars producing a dataset in which it is easy to discriminate classes, and 3) the datasets provide significantly different representations of the data encountered in real-world systems. For ML to make more of an impact in the InfoSec community requires a change in the data (including the features and labels) that is used to bridge the current semantic gap. As a first step in enabling more behavioral analyses, we label existing malware datasets with behavioral features using open-source threat reports associated with malware families. This behavioral labeling alters the analysis from identifying intent (e.g. good vs bad) or malware family membership to an analysis of which behaviors are exhibited by an executable. We offer the annotations with the hope of inspiring future improvements in the data that will further bridge the semantic gap between the ML and InfoSec communities.
Abstract:This paper presents a new technique for training networks for low-precision communication. Targeting minimal communication between nodes not only enables the use of emerging spiking neuromorphic platforms, but may additionally streamline processing conventionally. Low-power and embedded neuromorphic processors potentially offer dramatic performance-per-Watt improvements over traditional von Neumann processors, however programming these brain-inspired platforms generally requires platform-specific expertise which limits their applicability. To date, the majority of artificial neural networks have not operated using discrete spike-like communication. We present a method for training deep spiking neural networks using an iterative modification of the backpropagation optimization algorithm. This method, which we call Whetstone, effectively and reliably configures a network for a spiking hardware target with little, if any, loss in performance. Whetstone networks use single time step binary communication and do not require a rate code or other spike-based coding scheme, thus producing networks comparable in timing and size to conventional ANNs, albeit with binarized communication. We demonstrate Whetstone on a number of image classification networks, describing how the sharpening process interacts with different training optimizers and changes the distribution of activity within the network. We further note that Whetstone is compatible with several non-classification neural network applications, such as autoencoders and semantic segmentation. Whetstone is widely extendable and currently implemented using custom activation functions within the Keras wrapper to the popular TensorFlow machine learning framework.