Abstract:Industrial Operational Technology (OT) systems are increasingly targeted by cyber-attacks due to their integration with Information Technology (IT) systems in the Industry 4.0 era. Besides intrusion detection systems, honeypots can effectively detect these attacks. However, creating realistic honeypots for brownfield systems is particularly challenging. This paper introduces a generative model-based honeypot designed to mimic industrial OPC UA communication. Utilizing a Long ShortTerm Memory (LSTM) network, the honeypot learns the characteristics of a highly dynamic mechatronic system from recorded state space trajectories. Our contributions are twofold: first, we present a proof-of concept for a honeypot based on generative machine-learning models, and second, we publish a dataset for a cyclic industrial process. The results demonstrate that a generative model-based honeypot can feasibly replicate a cyclic industrial process via OPC UA communication. In the short-term, the generative model indicates a stable and plausible trajectory generation, while deviations occur over extended periods. The proposed honeypot implementation operates efficiently on constrained hardware, requiring low computational resources. Future work will focus on improving model accuracy, interaction capabilities, and extending the dataset for broader applications.
Abstract:This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a 1-Degree of Freedom (DOF) Quanser Aero 2 system. Classical control techniques such as MPC and Linear Quadratic Regulator (LQR) are widely used due to their theoretical foundation and practical effectiveness. However, with advancements in computational techniques and machine learning, DRL approaches like PPO have gained traction in solving optimal control problems through environment interaction. This paper systematically evaluates the dynamic response characteristics of PPO and MPC, comparing their performance, computational resource consumption, and implementation complexity. Experimental results show that while LQR achieves the best steady-state accuracy, PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability. Additionally, we have established a baseline for future RL-related research on this specific testbed. We also discuss the strengths and limitations of each control strategy, providing recommendations for selecting appropriate controllers for real-world scenarios.
Abstract:We consider the problem of learning the dynamics in the topology of time-evolving point clouds, the prevalent spatiotemporal model for systems exhibiting collective behavior, such as swarms of insects and birds or particles in physics. In such systems, patterns emerge from (local) interactions among self-propelled entities. While several well-understood governing equations for motion and interaction exist, they are difficult to fit to data due to the often large number of entities and missing correspondences between the observation times, which may also not be equidistant. To evade such confounding factors, we investigate collective behavior from a \textit{topological perspective}, but instead of summarizing entire observation sequences (as in prior work), we propose learning a latent dynamical model from topological features \textit{per time point}. The latter is then used to formulate a downstream regression task to predict the parametrization of some a priori specified governing equation. We implement this idea based on a latent ODE learned from vectorized (static) persistence diagrams and show that this modeling choice is justified by a combination of recent stability results for persistent homology. Various (ablation) experiments not only demonstrate the relevance of each individual model component, but provide compelling empirical evidence that our proposed model -- \textit{neural persistence dynamics} -- substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
Abstract:This paper proposes a framework for training Reinforcement Learning agents using Python in conjunction with Simulink models. Leveraging Python's superior customization options and popular libraries like Stable Baselines3, we aim to bridge the gap between the established Simulink environment and the flexibility of Python for training bleeding edge agents. Our approach is demonstrated on the Quanser Aero 2, a versatile dual-rotor helicopter. We show that policies trained on Simulink models can be seamlessly transferred to the real system, enabling efficient development and deployment of Reinforcement Learning agents for control tasks. Through systematic integration steps, including C-code generation from Simulink, DLL compilation, and Python interface development, we establish a robust framework for training agents on Simulink models. Experimental results demonstrate the effectiveness of our approach, surpassing previous efforts and highlighting the potential of combining Simulink with Python for Reinforcement Learning research and applications.
Abstract:Piecewise Polynomials (PPs) are utilized in several engineering disciplines, like trajectory planning, to approximate position profiles given in the form of a set of points. While the approximation target along with domain-specific requirements, like Ck -continuity, can be formulated as a system of equations and a result can be computed directly, such closed-form solutions posses limited flexibility with respect to polynomial degrees, polynomial bases or adding further domain-specific requirements. Sufficiently complex optimization goals soon call for the use of numerical methods, like gradient descent. Since gradient descent lies at the heart of training Artificial Neural Networks (ANNs), modern Machine Learning (ML) frameworks like TensorFlow come with a set of gradient-based optimizers potentially suitable for a wide range of optimization problems beyond the training task for ANNs. Our approach is to utilize the versatility of PP models and combine it with the potential of modern ML optimizers for the use in function approximation in 1D trajectory planning in the context of electronic cam design. We utilize available optimizers of the ML framework TensorFlow directly, outside of the scope of ANNs, to optimize model parameters of our PP model. In this paper, we show how an orthogonal polynomial basis contributes to improving approximation and continuity optimization performance. Utilizing Chebyshev polynomials of the first kind, we develop a novel regularization approach enabling clearly improved convergence behavior. We show that, using this regularization approach, Chebyshev basis performs better than power basis for all relevant optimizers in the combined approximation and continuity optimization setting and demonstrate usability of the presented approach within the electronic cam domain.
Abstract:Topological Data Analysis (TDA) is a mathematical method using techniques from topology for the analysis of complex, multi-dimensional data that has been widely and successfully applied in several fields such as medicine, material science, biology, and others. This survey summarizes the state of the art of TDA in yet another application area: industrial manufacturing and production in the context of Industry 4.0. We perform a rigorous and reproducible literature search of applications of TDA on the setting of industrial production and manufacturing. The resulting works are clustered and analyzed based on their application area within the manufacturing process and their input data type. We highlight the key benefits of TDA and their tools in this area and describe its challenges, as well as future potential. Finally, we discuss which TDA methods are underutilized in (the specific area of) industry and the identified types of application, with the goal of prompting more research in this profitable area of application.
Abstract:Regulatory bodies worldwide are intensifying their efforts to ensure transparency in influencer marketing on social media through instruments like the Unfair Commercial Practices Directive (UCPD) in the European Union, or Section 5 of the Federal Trade Commission Act. Yet enforcing these obligations has proven to be highly problematic due to the sheer scale of the influencer market. The task of automatically detecting sponsored content aims to enable the monitoring and enforcement of such regulations at scale. Current research in this field primarily frames this problem as a machine learning task, focusing on developing models that achieve high classification performance in detecting ads. These machine learning tasks rely on human data annotation to provide ground truth information. However, agreement between annotators is often low, leading to inconsistent labels that hinder the reliability of models. To improve annotation accuracy and, thus, the detection of sponsored content, we propose using chatGPT to augment the annotation process with phrases identified as relevant features and brief explanations. Our experiments show that this approach consistently improves inter-annotator agreement and annotation accuracy. Additionally, our survey of user experience in the annotation task indicates that the explanations improve the annotators' confidence and streamline the process. Our proposed methods can ultimately lead to more transparency and alignment with regulatory requirements in sponsored content detection.
Abstract:Industry 4.0 factories are complex and data-driven. Data is yielded from many sources, including sensors, PLCs, and other devices, but also from IT, like ERP or CRM systems. We ask how to collect and process this data in a way, such that it includes metadata and can be used for industrial analytics or to derive intelligent support systems. This paper describes a new, query model based approach, which uses a big data architecture to capture data from various sources using OPC UA as a foundation. It buffers and preprocesses the information for the purpose of harmonizing and providing a holistic state space of a factory, as well as mappings to the current state of a production site. That information can be made available to multiple processing sinks, decoupled from the data sources, which enables them to work with the information without interfering with devices of the production, disturbing the network devices they are working in, or influencing the production process negatively. Metadata and connected semantic information is kept throughout the process, allowing to feed algorithms with meaningful data, so that it can be accessed in its entirety to perform time series analysis, machine learning or similar evaluations as well as replaying the data from the buffer for repeatable simulations.
Abstract:Industry 4.0 is driven by demands like shorter time-to-market, mass customization of products, and batch size one production. Reinforcement Learning (RL), a machine learning paradigm shown to possess a great potential in improving and surpassing human level performance in numerous complex tasks, allows coping with the mentioned demands. In this paper, we present an OPC UA based Operational Technology (OT)-aware RL architecture, which extends the standard RL setting, combining it with the setting of digital twins. Moreover, we define an OPC UA information model allowing for a generalized plug-and-play like approach for exchanging the RL agent used. In conclusion, we demonstrate and evaluate the architecture, by creating a proof of concept. By means of solving a toy example, we show that this architecture can be used to determine the optimal policy using a real control system.
Abstract:Reinforcement Learning (RL) is a powerful machine learning paradigm that has been applied in various fields such as robotics, natural language processing and game playing achieving state-of-the-art results. Targeted to solve sequential decision making problems, it is by design able to learn from experience and therefore adapt to changing dynamic environments. These capabilities make it a prime candidate for controlling and optimizing complex processes in industry. The key to fully exploiting this potential is the seamless integration of RL into existing industrial systems. The industrial communication standard Open Platform Communications UnifiedArchitecture (OPC UA) could bridge this gap. However, since RL and OPC UA are from different fields,there is a need for researchers to bridge the gap between the two technologies. This work serves to bridge this gap by providing a brief technical overview of both technologies and carrying out a semi-exhaustive literature review to gain insights on how RL and OPC UA are applied in combination. With this survey, three main research topics have been identified, following the intersection of RL with OPC UA. The results of the literature review show that RL is a promising technology for the control and optimization of industrial processes, but does not yet have the necessary standardized interfaces to be deployed in real-world scenarios with reasonably low effort.