This work explores an extension of ML-optimized piecewise polynomial approximation by incorporating energy optimization as an additional objective. Traditional closed-form solutions enable continuity and approximation targets but lack flexibility in accommodating complex optimization goals. By leveraging modern gradient descent optimizers within TensorFlow, we introduce a framework that minimizes total curvature in cam profiles, leading to smoother motion and reduced energy consumption for input data that is unfavorable for sole approximation and continuity optimization. Experimental results confirm the effectiveness of this approach, demonstrating its potential to improve efficiency in scenarios where input data is noisy or suboptimal for conventional methods.