Abstract:We consider the problem of learning the dynamics in the topology of time-evolving point clouds, the prevalent spatiotemporal model for systems exhibiting collective behavior, such as swarms of insects and birds or particles in physics. In such systems, patterns emerge from (local) interactions among self-propelled entities. While several well-understood governing equations for motion and interaction exist, they are difficult to fit to data due to the often large number of entities and missing correspondences between the observation times, which may also not be equidistant. To evade such confounding factors, we investigate collective behavior from a \textit{topological perspective}, but instead of summarizing entire observation sequences (as in prior work), we propose learning a latent dynamical model from topological features \textit{per time point}. The latter is then used to formulate a downstream regression task to predict the parametrization of some a priori specified governing equation. We implement this idea based on a latent ODE learned from vectorized (static) persistence diagrams and show that this modeling choice is justified by a combination of recent stability results for persistent homology. Various (ablation) experiments not only demonstrate the relevance of each individual model component, but provide compelling empirical evidence that our proposed model -- \textit{neural persistence dynamics} -- substantially outperforms the state-of-the-art across a diverse set of parameter regression tasks.
Abstract:Topological Data Analysis (TDA) is a mathematical method using techniques from topology for the analysis of complex, multi-dimensional data that has been widely and successfully applied in several fields such as medicine, material science, biology, and others. This survey summarizes the state of the art of TDA in yet another application area: industrial manufacturing and production in the context of Industry 4.0. We perform a rigorous and reproducible literature search of applications of TDA on the setting of industrial production and manufacturing. The resulting works are clustered and analyzed based on their application area within the manufacturing process and their input data type. We highlight the key benefits of TDA and their tools in this area and describe its challenges, as well as future potential. Finally, we discuss which TDA methods are underutilized in (the specific area of) industry and the identified types of application, with the goal of prompting more research in this profitable area of application.
Abstract:Reinforcement Learning (RL) is a powerful machine learning paradigm that has been applied in various fields such as robotics, natural language processing and game playing achieving state-of-the-art results. Targeted to solve sequential decision making problems, it is by design able to learn from experience and therefore adapt to changing dynamic environments. These capabilities make it a prime candidate for controlling and optimizing complex processes in industry. The key to fully exploiting this potential is the seamless integration of RL into existing industrial systems. The industrial communication standard Open Platform Communications UnifiedArchitecture (OPC UA) could bridge this gap. However, since RL and OPC UA are from different fields,there is a need for researchers to bridge the gap between the two technologies. This work serves to bridge this gap by providing a brief technical overview of both technologies and carrying out a semi-exhaustive literature review to gain insights on how RL and OPC UA are applied in combination. With this survey, three main research topics have been identified, following the intersection of RL with OPC UA. The results of the literature review show that RL is a promising technology for the control and optimization of industrial processes, but does not yet have the necessary standardized interfaces to be deployed in real-world scenarios with reasonably low effort.
Abstract:In this paper, we revisit the application of Genetic Algorithm (GA) to the Traveling Salesperson Problem (TSP) and introduce a family of novel crossover operators that outperform the previous state of the art. The novel crossover operators aim to exploit symmetries in the solution space, which allows us to more effectively preserve well-performing individuals, namely the fitness invariance to circular shifts and reversals of solutions. These symmetries are general and not limited to or tailored to TSP specifically.
Abstract:Enterprises and labs performing computationally expensive data science applications sooner or later face the problem of scale but unconnected infrastructure. For this up-scaling process, an IT service provider can be hired or in-house personnel can attempt to implement a software stack. The first option can be quite expensive if it is just about connecting several machines. For the latter option often experience is missing with the data science staff in order to navigate through the software jungle. In this technical report, we illustrate the decision process towards an on-premises infrastructure, our implemented system architecture, and the transformation of the software stack towards a scaleable GPU cluster system.
Abstract:In this paper we discuss the application of AI and ML to the exemplary industrial use case of the two-dimensional commissioning problem in a high-bay storage, which essentially can be phrased as an instance of Traveling Salesperson Problem (TSP). We investigate the mlrose library that provides an TSP optimizer based on various heuristic optimization techniques. Our focus is on two methods, namely Genetic Algorithm and Hill Climbing, which are provided by mlrose. We present modifications for both methods that improve the computed tour lengths, by moderately exploiting the problem structure of TSP. However, the proposed improvements have some generic character and are not limited to TSP only.