Abstract:We present TaxaBind, a unified embedding space for characterizing any species of interest. TaxaBind is a multimodal embedding space across six modalities: ground-level images of species, geographic location, satellite image, text, audio, and environmental features, useful for solving ecological problems. To learn this joint embedding space, we leverage ground-level images of species as a binding modality. We propose multimodal patching, a technique for effectively distilling the knowledge from various modalities into the binding modality. We construct two large datasets for pretraining: iSatNat with species images and satellite images, and iSoundNat with species images and audio. Additionally, we introduce TaxaBench-8k, a diverse multimodal dataset with six paired modalities for evaluating deep learning models on ecological tasks. Experiments with TaxaBind demonstrate its strong zero-shot and emergent capabilities on a range of tasks including species classification, cross-model retrieval, and audio classification. The datasets and models are made available at https://github.com/mvrl/TaxaBind.
Abstract:A soundscape is defined by the acoustic environment a person perceives at a location. In this work, we propose a framework for mapping soundscapes across the Earth. Since soundscapes involve sound distributions that span varying spatial scales, we represent locations with multi-scale satellite imagery and learn a joint representation among this imagery, audio, and text. To capture the inherent uncertainty in the soundscape of a location, we design the representation space to be probabilistic. We also fuse ubiquitous metadata (including geolocation, time, and data source) to enable learning of spatially and temporally dynamic representations of soundscapes. We demonstrate the utility of our framework by creating large-scale soundscape maps integrating both audio and text with temporal control. To facilitate future research on this task, we also introduce a large-scale dataset, GeoSound, containing over $300k$ geotagged audio samples paired with both low- and high-resolution satellite imagery. We demonstrate that our method outperforms the existing state-of-the-art on both GeoSound and the existing SoundingEarth dataset. Our dataset and code is available at https://github.com/mvrl/PSM.
Abstract:We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities. This could emulate a UAV involved in a search-and-rescue operation navigating through an area, observing a stream of aerial images as it goes. The AGL task is associated with two important challenges. Firstly, an agent must deal with a goal specification in one of multiple modalities (e.g., through a natural language description) while the search cues are provided in other modalities (aerial imagery). The second challenge is limited localization time (e.g., limited battery life, urgency) so that the goal must be localized as efficiently as possible, i.e. the agent must effectively leverage its sequentially observed aerial views when searching for the goal. To address these challenges, we propose GOMAA-Geo - a goal modality agnostic active geo-localization agent - for zero-shot generalization between different goal modalities. Our approach combines cross-modality contrastive learning to align representations across modalities with supervised foundation model pretraining and reinforcement learning to obtain highly effective navigation and localization policies. Through extensive evaluations, we show that GOMAA-Geo outperforms alternative learnable approaches and that it generalizes across datasets - e.g., to disaster-hit areas without seeing a single disaster scenario during training - and goal modalities - e.g., to ground-level imagery or textual descriptions, despite only being trained with goals specified as aerial views. Code and models are publicly available at https://github.com/mvrl/GOMAA-Geo/tree/main.
Abstract:In remote sensing, we are interested in modeling various modalities for some geographic location. Several works have focused on learning the relationship between a location and type of landscape, habitability, audio, textual descriptions, etc. Recently, a common way to approach these problems is to train a deep-learning model that uses satellite images to infer some unique characteristics of the location. In this work, we present a deep-learning model, GeoBind, that can infer about multiple modalities, specifically text, image, and audio, from satellite imagery of a location. To do this, we use satellite images as the binding element and contrastively align all other modalities to the satellite image data. Our training results in a joint embedding space with multiple types of data: satellite image, ground-level image, audio, and text. Furthermore, our approach does not require a single complex dataset that contains all the modalities mentioned above. Rather it only requires multiple satellite-image paired data. While we only align three modalities in this paper, we present a general framework that can be used to create an embedding space with any number of modalities by using satellite images as the binding element. Our results show that, unlike traditional unimodal models, GeoBind is versatile and can reason about multiple modalities for a given satellite image input.
Abstract:We present GeoSynth, a model for synthesizing satellite images with global style and image-driven layout control. The global style control is via textual prompts or geographic location. These enable the specification of scene semantics or regional appearance respectively, and can be used together. We train our model on a large dataset of paired satellite imagery, with automatically generated captions, and OpenStreetMap data. We evaluate various combinations of control inputs, including different types of layout controls. Results demonstrate that our model can generate diverse, high-quality images and exhibits excellent zero-shot generalization. The code and model checkpoints are available at https://github.com/mvrl/GeoSynth.
Abstract:We focus on the problem of species distribution modeling using global-scale presence-only data. Most previous studies have mapped the range of a given species using geographical and environmental features alone. To capture a stronger implicit relationship between species, we encode the taxonomic hierarchy of species using a large language model. This enables range mapping for any taxonomic rank and unseen species without additional supervision. Further, we propose a novel proximity-aware evaluation metric that enables evaluating species distribution models using any pixel-level representation of ground-truth species range map. The proposed metric penalizes the predictions of a model based on its proximity to the ground truth. We describe the effectiveness of our model by systematically evaluating on the task of species range prediction, zero-shot prediction and geo-feature regression against the state-of-the-art. Results show our model outperforms the strong baselines when trained with a variety of multi-label learning losses.
Abstract:We propose a metadata-aware self-supervised learning~(SSL)~framework useful for fine-grained classification and ecological mapping of bird species around the world. Our framework unifies two SSL strategies: Contrastive Learning~(CL) and Masked Image Modeling~(MIM), while also enriching the embedding space with metadata available with ground-level imagery of birds. We separately train uni-modal and cross-modal ViT on a novel cross-view global bird species dataset containing ground-level imagery, metadata (location, time), and corresponding satellite imagery. We demonstrate that our models learn fine-grained and geographically conditioned features of birds, by evaluating on two downstream tasks: fine-grained visual classification~(FGVC) and cross-modal retrieval. Pre-trained models learned using our framework achieve SotA performance on FGVC of iNAT-2021 birds and in transfer learning settings for CUB-200-2011 and NABirds datasets. Moreover, the impressive cross-modal retrieval performance of our model enables the creation of species distribution maps across any geographic region. The dataset and source code will be released at https://github.com/mvrl/BirdSAT}.
Abstract:This paper presents a novel approach to Single-Positive Multi-label Learning. In general multi-label learning, a model learns to predict multiple labels or categories for a single input image. This is in contrast with standard multi-class image classification, where the task is predicting a single label from many possible labels for an image. Single-Positive Multi-label Learning (SPML) specifically considers learning to predict multiple labels when there is only a single annotation per image in the training data. Multi-label learning is in many ways a more realistic task than single-label learning as real-world data often involves instances belonging to multiple categories simultaneously; however, most common computer vision datasets predominantly contain single labels due to the inherent complexity and cost of collecting multiple high quality annotations for each instance. We propose a novel approach called Vision-Language Pseudo-Labeling (VLPL), which uses a vision-language model to suggest strong positive and negative pseudo-labels, and outperforms the current SOTA methods by 5.5% on Pascal VOC, 18.4% on MS-COCO, 15.2% on NUS-WIDE, and 8.4% on CUB-Birds. Our code and data are available at https://github.com/mvrl/VLPL.
Abstract:We focus on the task of soundscape mapping, which involves predicting the most probable sounds that could be perceived at a particular geographic location. We utilise recent state-of-the-art models to encode geotagged audio, a textual description of the audio, and an overhead image of its capture location using contrastive pre-training. The end result is a shared embedding space for the three modalities, which enables the construction of soundscape maps for any geographic region from textual or audio queries. Using the SoundingEarth dataset, we find that our approach significantly outperforms the existing SOTA, with an improvement of image-to-audio Recall@100 from 0.256 to 0.450. Our code is available at https://github.com/mvrl/geoclap.
Abstract:We propose a novel weakly supervised approach for creating maps using free-form textual descriptions (or captions). We refer to this new line of work of creating textual maps as zero-shot mapping. Prior works have approached mapping tasks by developing models that predict over a fixed set of attributes using overhead imagery. However, these models are very restrictive as they can only solve highly specific tasks for which they were trained. Mapping text, on the other hand, allows us to solve a large variety of mapping problems with minimal restrictions. To achieve this, we train a contrastive learning framework called Sat2Cap on a new large-scale dataset of paired overhead and ground-level images. For a given location, our model predicts the expected CLIP embedding of the ground-level scenery. Sat2Cap is also conditioned on temporal information, enabling it to learn dynamic concepts that vary over time. Our experimental results demonstrate that our models successfully capture fine-grained concepts and effectively adapt to temporal variations. Our approach does not require any text-labeled data making the training easily scalable. The code, dataset, and models will be made publicly available.