Abstract:Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce KAN Adapters, which leverage Kolmogorov-Arnold Networks (KAN) as adaptive modules. They serve as replacements for traditional MLP-based LoRA adapters. With learnable spline-based activations, KAN Adapters excel in modeling complex, non-linear relationships, achieving superior fidelity, faster convergence and semantic alignment. Extensive experiments and ablation studies on our proposed FLORA dataset validate the superiority of KAN Adapters over LoRA adapters. To foster further research and collaboration, we will open-source both the FLORA and our implementation code.
Abstract:In this work, we compare the performance of deep learning models for classifying the spinodal dataset. We evaluate state-of-the-art models (MobileViT, NAT, EfficientNet, CNN), alongside several ensemble models (majority voting, AdaBoost). Additionally, we explore the dataset in a transformed color space. Our findings show that NAT and MobileViT outperform other models, achieving the highest metrics-accuracy, AUC, and F1 score on both training and testing data (NAT: 94.65, 0.98, 0.94; MobileViT: 94.20, 0.98, 0.94), surpassing the earlier CNN model (88.44, 0.95, 0.88). We also discuss failure cases for the top performing models.
Abstract:The spatio-temporal complexity of video data presents significant challenges in tasks such as compression, generation, and inpainting. We present four key contributions to address the challenges of spatiotemporal video processing. First, we introduce the 3D Mobile Inverted Vector-Quantization Variational Autoencoder (3D-MBQ-VAE), which combines Variational Autoencoders (VAEs) with masked token modeling to enhance spatiotemporal video compression. The model achieves superior temporal consistency and state-of-the-art (SOTA) reconstruction quality by employing a novel training strategy with full frame masking. Second, we present MotionAura, a text-to-video generation framework that utilizes vector-quantized diffusion models to discretize the latent space and capture complex motion dynamics, producing temporally coherent videos aligned with text prompts. Third, we propose a spectral transformer-based denoising network that processes video data in the frequency domain using the Fourier Transform. This method effectively captures global context and long-range dependencies for high-quality video generation and denoising. Lastly, we introduce a downstream task of Sketch Guided Video Inpainting. This task leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning. Our models achieve SOTA performance on a range of benchmarks. Our work offers robust frameworks for spatiotemporal modeling and user-driven video content manipulation. We will release the code, datasets, and models in open-source.
Abstract:This paper proposes a hybrid quantum neural network (HQNN) for indoor user localization using received signal strength indicator (RSSI) values. We use publicly available RSSI datasets for indoor localization using WiFi, Bluetooth, and Zigbee to test the performance of the proposed HQNN. We also compare the performance of the HQNN with the recently proposed quantum fingerprinting-based user localization method. Our results show that the proposed HQNN performs better than the quantum fingerprinting algorithm since the HQNN has trainable parameters in the quantum circuits, whereas the quantum fingerprinting algorithm uses a fixed quantum circuit to calculate the similarity between the test data point and the fingerprint dataset. Unlike prior works, we also test the performance of the HQNN and quantum fingerprint algorithm on a real IBM quantum computer using cloud quantum computing services. Therefore, this paper examines the performance of the HQNN on noisy intermediate scale (NISQ) quantum devices using real-world RSSI localization datasets. The novelty of our approach lies in the use of simple feature maps and ansatz with fewer neurons, alongside testing on actual quantum hardware using real-world data, demonstrating practical applicability in real-world scenarios.
Abstract:In image processing, one of the most challenging tasks is to render an image's semantic meaning using a variety of artistic approaches. Existing techniques for arbitrary style transfer (AST) frequently experience mode-collapse, over-stylization, or under-stylization due to a disparity between the style and content images. We propose a novel framework called D$^2$Styler (Discrete Diffusion Styler) that leverages the discrete representational capability of VQ-GANs and the advantages of discrete diffusion, including stable training and avoidance of mode collapse. Our method uses Adaptive Instance Normalization (AdaIN) features as a context guide for the reverse diffusion process. This makes it easy to move features from the style image to the content image without bias. The proposed method substantially enhances the visual quality of style-transferred images, allowing the combination of content and style in a visually appealing manner. We take style images from the WikiArt dataset and content images from the COCO dataset. Experimental results demonstrate that D$^2$Styler produces high-quality style-transferred images and outperforms twelve existing methods on nearly all the metrics. The qualitative results and ablation studies provide further insights into the efficacy of our technique. The code is available at https://github.com/Onkarsus13/D2Styler.
Abstract:Deep learning has demonstrated remarkable achievements in medical image segmentation. However, prevailing deep learning models struggle with poor generalization due to (i) intra-class variations, where the same class appears differently in different samples, and (ii) inter-class independence, resulting in difficulties capturing intricate relationships between distinct objects, leading to higher false negative cases. This paper presents a novel approach that synergies spatial and spectral representations to enhance domain-generalized medical image segmentation. We introduce the innovative Spectral Correlation Coefficient objective to improve the model's capacity to capture middle-order features and contextual long-range dependencies. This objective complements traditional spatial objectives by incorporating valuable spectral information. Extensive experiments reveal that optimizing this objective with existing architectures like UNet and TransUNet significantly enhances generalization, interpretability, and noise robustness, producing more confident predictions. For instance, in cardiac segmentation, we observe a 0.81 pp and 1.63 pp (pp = percentage point) improvement in DSC over UNet and TransUNet, respectively. Our interpretability study demonstrates that, in most tasks, objectives optimized with UNet outperform even TransUNet by introducing global contextual information alongside local details. These findings underscore the versatility and effectiveness of our proposed method across diverse imaging modalities and medical domains.
Abstract:Accurate identification and precise delineation of regions of significance, such as tumors or lesions, is a pivotal goal in medical imaging analysis. This paper proposes SPEEDNet, a novel architecture for precisely segmenting lesions within colonoscopy images. SPEEDNet uses a novel block named Dilated-Involutional Pyramidal Convolution Fusion (DIPC). A DIPC block combines the dilated involution layers pairwise into a pyramidal structure to convert the feature maps into a compact space. This lowers the total number of parameters while improving the learning of representations across an optimal receptive field, thereby reducing the blurring effect. On the EBHISeg dataset, SPEEDNet outperforms three previous networks: UNet, FeedNet, and AttesResDUNet. Specifically, SPEEDNet attains an average dice score of 0.952 and a recall of 0.971. Qualitative results and ablation studies provide additional insights into the effectiveness of SPEEDNet. The model size of SPEEDNet is 9.81 MB, significantly smaller than that of UNet (22.84 MB), FeedNet(185.58 MB), and AttesResDUNet (140.09 MB).
Abstract:Knowledge distillation(KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of what and from where to distill knowledge from the teacher to the student. This oversight may lead to issues like the accumulation of training bias within shallower student layers, potentially compromising the effectiveness of KD. To address these challenges, we propose Hierarchical Layer-selective Feedback Distillation (HLFD). HLFD strategically distills knowledge from a combination of middle layers to earlier layers and transfers final layer knowledge to intermediate layers at both the feature and pixel levels. This design allows the model to learn higher-quality representations from earlier layers, resulting in a robust and compact student model. Extensive quantitative evaluations reveal that HLFD outperforms existing methods by a significant margin. For example, in the kidney segmentation task, HLFD surpasses the student model (without KD) by over 10pp, significantly improving its focus on tumor-specific features. From a qualitative standpoint, the student model trained using HLFD excels at suppressing irrelevant information and can focus sharply on tumor-specific details, which opens a new pathway for more efficient and accurate diagnostic tools.
Abstract:In recent years, continuous latent space (CLS) and discrete latent space (DLS) deep learning models have been proposed for medical image analysis for improved performance. However, these models encounter distinct challenges. CLS models capture intricate details but often lack interpretability in terms of structural representation and robustness due to their emphasis on low-level features. Conversely, DLS models offer interpretability, robustness, and the ability to capture coarse-grained information thanks to their structured latent space. However, DLS models have limited efficacy in capturing fine-grained details. To address the limitations of both DLS and CLS models, we propose SynergyNet, a novel bottleneck architecture designed to enhance existing encoder-decoder segmentation frameworks. SynergyNet seamlessly integrates discrete and continuous representations to harness complementary information and successfully preserves both fine and coarse-grained details in the learned representations. Our extensive experiment on multi-organ segmentation and cardiac datasets demonstrates that SynergyNet outperforms other state of the art methods, including TransUNet: dice scores improving by 2.16%, and Hausdorff scores improving by 11.13%, respectively. When evaluating skin lesion and brain tumor segmentation datasets, we observe a remarkable improvement of 1.71% in Intersection-over Union scores for skin lesion segmentation and of 8.58% for brain tumor segmentation. Our innovative approach paves the way for enhancing the overall performance and capabilities of deep learning models in the critical domain of medical image analysis.
Abstract:Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.