"Santu"
Abstract:Semantic Overlap Summarization (SOS) is a constrained multi-document summarization task, where the constraint is to capture the common/overlapping information between two alternative narratives. While recent advancements in Large Language Models (LLMs) have achieved superior performance in numerous summarization tasks, a benchmarking study of the SOS task using LLMs is yet to be performed. As LLMs' responses are sensitive to slight variations in prompt design, a major challenge in conducting such a benchmarking study is to systematically explore a variety of prompts before drawing a reliable conclusion. Fortunately, very recently, the TELeR taxonomy has been proposed which can be used to design and explore various prompts for LLMs. Using this TELeR taxonomy and 15 popular LLMs, this paper comprehensively evaluates LLMs on the SOS Task, assessing their ability to summarize overlapping information from multiple alternative narratives. For evaluation, we report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives. We conclude the paper by analyzing the strengths and limitations of various LLMs in terms of their capabilities in capturing overlapping information The code and datasets used to conduct this study are available at https://anonymous.4open.science/r/llm_eval-E16D.
Abstract:One of the most important yet onerous tasks in the academic peer-reviewing process is composing meta-reviews, which involves understanding the core contributions, strengths, and weaknesses of a scholarly manuscript based on peer-review narratives from multiple experts and then summarizing those multiple experts' perspectives into a concise holistic overview. Given the latest major developments in generative AI, especially Large Language Models (LLMs), it is very compelling to rigorously study the utility of LLMs in generating such meta-reviews in an academic peer-review setting. In this paper, we perform a case study with three popular LLMs, i.e., GPT-3.5, LLaMA2, and PaLM2, to automatically generate meta-reviews by prompting them with different types/levels of prompts based on the recently proposed TELeR taxonomy. Finally, we perform a detailed qualitative study of the meta-reviews generated by the LLMs and summarize our findings and recommendations for prompting LLMs for this complex task.
Abstract:Large Language Models (LLMs) have demonstrated remarkable language understanding and generation capabilities. However, training, deploying, and accessing these models pose notable challenges, including resource-intensive demands, extended training durations, and scalability issues. To address these issues, we introduce a concept of hierarchical, distributed LLM architecture that aims at enhancing the accessibility and deployability of LLMs across heterogeneous computing platforms, including general-purpose computers (e.g., laptops) and IoT-style devices (e.g., embedded systems). By introducing a "layered" approach, the proposed architecture enables on-demand accessibility to LLMs as a customizable service. This approach also ensures optimal trade-offs between the available computational resources and the user's application needs. We envision that the concept of hierarchical LLM will empower extensive, crowd-sourced user bases to harness the capabilities of LLMs, thereby fostering advancements in AI technology in general.
Abstract:BERT-based neural architectures have established themselves as popular state-of-the-art baselines for many downstream NLP tasks. However, these architectures are data-hungry and consume a lot of memory and energy, often hindering their deployment in many real-time, resource-constrained applications. Existing lighter versions of BERT (eg. DistilBERT and TinyBERT) often cannot perform well on complex NLP tasks. More importantly, from a designer's perspective, it is unclear what is the "right" BERT-based architecture to use for a given NLP task that can strike the optimal trade-off between the resources available and the minimum accuracy desired by the end user. System engineers have to spend a lot of time conducting trial-and-error experiments to find a suitable answer to this question. This paper presents an exploratory study of BERT-based models under different resource constraints and accuracy budgets to derive empirical observations about this resource/accuracy trade-offs. Our findings can help designers to make informed choices among alternative BERT-based architectures for embedded systems, thus saving significant development time and effort.
Abstract:Sentence encoders have indeed been shown to achieve superior performances for many downstream text-mining tasks and, thus, claimed to be fairly general. Inspired by this, we performed a detailed study on how to leverage these sentence encoders for the "zero-shot topic inference" task, where the topics are defined/provided by the users in real-time. Extensive experiments on seven different datasets demonstrate that Sentence-BERT demonstrates superior generality compared to other encoders, while Universal Sentence Encoder can be preferred when efficiency is a top priority.
Abstract:This paper presents a high-quality dataset for evaluating the quality of Bangla word embeddings, which is a fundamental task in the field of Natural Language Processing (NLP). Despite being the 7th most-spoken language in the world, Bangla is a low-resource language and popular NLP models fail to perform well. Developing a reliable evaluation test set for Bangla word embeddings are crucial for benchmarking and guiding future research. We provide a Mikolov-style word analogy evaluation set specifically for Bangla, with a sample size of 16678, as well as a translated and curated version of the Mikolov dataset, which contains 10594 samples for cross-lingual research. Our experiments with different state-of-the-art embedding models reveal that Bangla has its own unique characteristics, and current embeddings for Bangla still struggle to achieve high accuracy on both datasets. We suggest that future research should focus on training models with larger datasets and considering the unique morphological characteristics of Bangla. This study represents the first step towards building a reliable NLP system for the Bangla language1.