"Santu"
Abstract:Semantic Overlap Summarization (SOS) is a constrained multi-document summarization task, where the constraint is to capture the common/overlapping information between two alternative narratives. While recent advancements in Large Language Models (LLMs) have achieved superior performance in numerous summarization tasks, a benchmarking study of the SOS task using LLMs is yet to be performed. As LLMs' responses are sensitive to slight variations in prompt design, a major challenge in conducting such a benchmarking study is to systematically explore a variety of prompts before drawing a reliable conclusion. Fortunately, very recently, the TELeR taxonomy has been proposed which can be used to design and explore various prompts for LLMs. Using this TELeR taxonomy and 15 popular LLMs, this paper comprehensively evaluates LLMs on the SOS Task, assessing their ability to summarize overlapping information from multiple alternative narratives. For evaluation, we report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives. We conclude the paper by analyzing the strengths and limitations of various LLMs in terms of their capabilities in capturing overlapping information The code and datasets used to conduct this study are available at https://anonymous.4open.science/r/llm_eval-E16D.
Abstract:With the growth of computer vision applications, deep learning, and edge computing contribute to ensuring practical collaborative intelligence (CI) by distributing the workload among edge devices and the cloud. However, running separate single-task models on edge devices is inefficient regarding the required computational resource and time. In this context, multi-task learning allows leveraging a single deep learning model for performing multiple tasks, such as semantic segmentation and depth estimation on incoming video frames. This single processing pipeline generates common deep features that are shared among multi-task modules. However, in a collaborative intelligence scenario, generating common deep features has two major issues. First, the deep features may inadvertently contain input information exposed to the downstream modules (violating input privacy). Second, the generated universal features expose a piece of collective information than what is intended for a certain task, in which features for one task can be utilized to perform another task (violating task privacy). This paper proposes a novel deep learning-based privacy-cognizant feature generation process called MetaMorphosis that limits inference capability to specific tasks at hand. To achieve this, we propose a channel squeeze-excitation based feature metamorphosis module, Cross-SEC, to achieve distinct attention of all tasks and a de-correlation loss function with differential-privacy to train a deep learning model that produces distinct privacy-aware features as an output for the respective tasks. With extensive experimentation on four datasets consisting of diverse images related to scene understanding and facial attributes, we show that MetaMorphosis outperforms recent adversarial learning and universal feature generation methods by guaranteeing privacy requirements in an efficient way for image and video analytics.