Abstract:Model predictive control (MPC) has established itself as the primary methodology for constrained control, enabling general-purpose robot autonomy in diverse real-world scenarios. However, for most problems of interest, MPC relies on the recursive solution of highly non-convex trajectory optimization problems, leading to high computational complexity and strong dependency on initialization. In this work, we present a unified framework to combine the main strengths of optimization-based and learning-based methods for MPC. Our approach entails embedding high-capacity, transformer-based neural network models within the optimization process for trajectory generation, whereby the transformer provides a near-optimal initial guess, or target plan, to a non-convex optimization problem. Our experiments, performed in simulation and the real world onboard a free flyer platform, demonstrate the capabilities of our framework to improve MPC convergence and runtime. Compared to purely optimization-based approaches, results show that our approach can improve trajectory generation performance by up to 75%, reduce the number of solver iterations by up to 45%, and improve overall MPC runtime by 7x without loss in performance.
Abstract:Effective trajectory generation is essential for reliable on-board spacecraft autonomy. Among other approaches, learning-based warm-starting represents an appealing paradigm for solving the trajectory generation problem, effectively combining the benefits of optimization- and data-driven methods. Current approaches for learning-based trajectory generation often focus on fixed, single-scenario environments, where key scene characteristics, such as obstacle positions or final-time requirements, remain constant across problem instances. However, practical trajectory generation requires the scenario to be frequently reconfigured, making the single-scenario approach a potentially impractical solution. To address this challenge, we present a novel trajectory generation framework that generalizes across diverse problem configurations, by leveraging high-capacity transformer neural networks capable of learning from multimodal data sources. Specifically, our approach integrates transformer-based neural network models into the trajectory optimization process, encoding both scene-level information (e.g., obstacle locations, initial and goal states) and trajectory-level constraints (e.g., time bounds, fuel consumption targets) via multimodal representations. The transformer network then generates near-optimal initial guesses for non-convex optimization problems, significantly enhancing convergence speed and performance. The framework is validated through extensive simulations and real-world experiments on a free-flyer platform, achieving up to 30% cost improvement and 80% reduction in infeasible cases with respect to traditional approaches, and demonstrating robust generalization across diverse scenario variations.
Abstract:Future multi-spacecraft missions require robust autonomous trajectory optimization capabilities to ensure safe and efficient rendezvous operations. This capability hinges on solving non-convex optimal control problems in real time, although traditional iterative methods such as sequential convex programming impose significant computational challenges. To mitigate this burden, the Autonomous Rendezvous Transformer introduced a generative model trained to provide near-optimal initial guesses. This approach provides convergence to better local optima (e.g., fuel optimality), improves feasibility rates, and results in faster convergence speed of optimization algorithms through warm-starting. This work extends the capabilities of ART to address robust chance-constrained optimal control problems. Specifically, ART is applied to challenging rendezvous scenarios in Low Earth Orbit (LEO), ensuring fault-tolerant behavior under uncertainty. Through extensive experimentation, the proposed warm-starting strategy is shown to consistently produce high-quality reference trajectories, achieving up to 30% cost improvement and 50% reduction in infeasible cases compared to conventional methods, demonstrating robust performance across multiple state representations. Additionally, a post hoc evaluation framework is proposed to assess the quality of generated trajectories and mitigate runtime failures, marking an initial step toward the reliable deployment of AI-driven solutions in safety-critical autonomous systems such as spacecraft.
Abstract:This work presents Spacecraft Pose Network v3 (SPNv3), a Neural Network (NN) for monocular pose estimation of a known, non-cooperative target spacecraft. As opposed to existing literature, SPNv3 is designed and trained to be computationally efficient while providing robustness to spaceborne images that have not been observed during offline training and validation on the ground. These characteristics are essential to deploying NNs on space-grade edge devices. They are achieved through careful NN design choices, and an extensive trade-off analysis reveals features such as data augmentation, transfer learning and vision transformer architecture as a few of those that contribute to simultaneously maximizing robustness and minimizing computational overhead. Experiments demonstrate that the final SPNv3 can achieve state-of-the-art pose accuracy on hardware-in-the-loop images from a robotic testbed while having trained exclusively on computer-generated synthetic images, effectively bridging the domain gap between synthetic and real imagery. At the same time, SPNv3 runs well above the update frequency of modern satellite navigation filters when tested on a representative graphical processing unit system with flight heritage. Overall, SPNv3 is an efficient, flight-ready NN model readily applicable to a wide range of close-range rendezvous and proximity operations with target resident space objects. The code implementation of SPNv3 will be made publicly available.
Abstract:Foundation models, e.g., large language models, possess attributes of intelligence which offer promise to endow a robot with the contextual understanding necessary to navigate complex, unstructured tasks in the wild. In the future of space robotics, we see three core challenges which motivate the use of a foundation model adapted to space-based applications: 1) Scalability of ground-in-the-loop operations; 2) Generalizing prior knowledge to novel environments; and 3) Multi-modality in tasks and sensor data. Therefore, as a first-step towards building a foundation model for space-based applications, we automatically label the AI4Mars dataset to curate a language annotated dataset of visual-question-answer tuples. We fine-tune a pretrained LLaVA checkpoint on this dataset to endow a vision-language model with the ability to perform spatial reasoning and navigation on Mars' surface. In this work, we demonstrate that 1) existing vision-language models are deficient visual reasoners in space-based applications, and 2) fine-tuning a vision-language model on extraterrestrial data significantly improves the quality of responses even with a limited training dataset of only a few thousand samples.
Abstract:This paper presents initial flight results for distributed optical angles-only navigation of a swarm of small spacecraft, conducted during the Starling Formation-Flying Optical Experiment (StarFOX). StarFOX is a core payload of the NASA Starling mission, which consists of four CubeSats launched in 2023. Prior angles-only flight demonstrations have only featured one observer and target and have relied upon a-priori target orbit knowledge for initialization, translational maneuvers to resolve target range, and external absolute orbit updates to maintain convergence. StarFOX overcomes these limitations by applying the angles-only Absolute and Relative Trajectory Measurement System (ARTMS), which integrates three novel algorithms. Image Processing detects and tracks multiple targets in images from each satellite's on-board camera. Batch Orbit Determination computes initial swarm orbit estimates from bearing angle batches. Sequential Orbit Determination leverages an unscented Kalman filter to refine swarm state estimates over time. Multi-observer measurements shared over an intersatellite link are seamlessly fused to enable absolute and relative orbit determination. StarFOX flight data presents the first demonstrations of autonomous angles-only navigation for a satellite swarm, including multi-target and multi-observer relative navigation; autonomous initialization of navigation for unknown targets; and simultaneous absolute and relative orbit determination. Relative positioning uncertainties of 1.3% of target range (1$\sigma$) are achieved for a single observer under challenging measurement conditions, reduced to 0.6% (1$\sigma$) with multiple observers. Results demonstrate promising performance with regards to ongoing StarFOX campaigns and the application of angles-only navigation to future distributed missions.
Abstract:Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.
Abstract:This work presents an Online Supervised Training (OST) method to enable robust vision-based navigation about a non-cooperative spacecraft. Spaceborne Neural Networks (NN) are susceptible to domain gap as they are primarily trained with synthetic images due to the inaccessibility of space. OST aims to close this gap by training a pose estimation NN online using incoming flight images during Rendezvous and Proximity Operations (RPO). The pseudo-labels are provided by adaptive unscented Kalman filter where the NN is used in the loop as a measurement module. Specifically, the filter tracks the target's relative orbital and attitude motion, and its accuracy is ensured by robust on-ground training of the NN using only synthetic data. The experiments on real hardware-in-the-loop trajectory images show that OST can improve the NN performance on the target image domain given that OST is performed on images of the target viewed from a diverse set of directions during RPO.
Abstract:This paper first defines a class of estimation problem called simultaneous navigation and characterization (SNAC), which is a superset of simultaneous localization and mapping (SLAM). A SNAC framework is then developed for the Autonomous Nanosatellite Swarming (ANS) mission concept to autonomously navigate about and characterize an asteroid including the asteroid gravity field, rotational motion, and 3D shape. The ANS SNAC framework consists of three modules: 1) multi-agent optical landmark tracking and 3D point reconstruction using stereovision, 2) state estimation through a computationally efficient and robust unscented Kalman filter, and 3) reconstruction of an asteroid spherical harmonic shape model by leveraging a priori knowledge of the shape properties of celestial bodies. Despite significant interest in asteroids, there are several limitations to current asteroid rendezvous mission concepts. First, completed missions heavily rely on human oversight and Earth-based resources. Second, proposed solutions to increase autonomy make oversimplifying assumptions about state knowledge and information processing. Third, asteroid mission concepts often opt for high size, weight, power, and cost (SWaP-C) avionics for environmental measurements. Finally, such missions often utilize a single spacecraft, neglecting the benefits of distributed space systems. In contrast, ANS is composed of multiple autonomous nanosatellites equipped with low SWaP-C avionics. The ANS SNAC framework is validated through a numerical simulation of three spacecraft orbiting asteroid 433 Eros. The simulation results demonstrate that the proposed architecture provides autonomous and accurate SNAC in a safe manner without an a priori shape model and using only low SWaP-C avionics.
Abstract:This paper presents a neural network-based Unscented Kalman Filter (UKF) to track the pose (i.e., position and orientation) of a known, noncooperative, tumbling target spacecraft in a close-proximity rendezvous scenario. The UKF estimates the relative orbital and attitude states of the target with respect to the servicer based on the pose information extracted from incoming monocular images of the target spacecraft with a Convolutional Neural Network (CNN). In order to enable reliable tracking, the process noise covariance matrix of the UKF is tuned online using adaptive state noise compensation. Specifically, the closed-form process noise model for the relative attitude dynamics is newly derived and implemented. In order to enable a comprehensive analysis of the performance and robustness of the proposed CNN-powered UKF, this paper also introduces the Satellite Hardware-In-the-loop Rendezvous Trajectories (SHIRT) dataset which comprises the labeled imagery of two representative rendezvous trajectories in low Earth orbit. For each trajectory, two sets of images are respectively created from a graphics renderer and a robotic testbed to allow testing the filter's robustness across domain gap. The proposed UKF is evaluated on both domains of the trajectories in SHIRT and is shown to have sub-decimeter-level position and degree-level orientation errors at steady-state.