Abstract:The increasing demand for democratizing machine learning algorithms for general software developers calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters, which can cause a large variation in the training cost. But this effect is largely ignored in existing HPO methods, which are incapable to properly control cost during the optimization process. To address this problem, we develop a cost effective HPO solution. The core of our solution is a new randomized direct-search method. We prove a convergence rate of $O(\frac{\sqrt{d}}{\sqrt{K}})$ and provide an analysis on how it can be used to control evaluation cost under reasonable assumptions. Extensive evaluation using a latest AutoML benchmark shows a strong any time performance of the proposed HPO method when tuning cost-related hyperparameters.
Abstract:A configuration of training refers to the combinations of feature engineering, learner, and its associated hyperparameters. Given a set of configurations and a large dataset randomly split into training and testing set, we study how to efficiently identify the best configuration with approximately the highest testing accuracy when trained from the training set. To guarantee small accuracy loss, we develop a solution using confidence interval (CI)-based progressive sampling and pruning strategy. Compared to using full data to find the exact best configuration, our solution achieves more than two orders of magnitude speedup, while the returned top configuration has identical or close test accuracy.