Abstract:Large Language Models (LLMs) have rapidly become important tools in Biomedical and Health Informatics (BHI), enabling new ways to analyze data, treat patients, and conduct research. This bibliometric review aims to provide a panoramic view of how LLMs have been used in BHI by examining research articles and collaboration networks from 2022 to 2023. It further explores how LLMs can improve Natural Language Processing (NLP) applications in various BHI areas like medical diagnosis, patient engagement, electronic health record management, and personalized medicine. To do this, our bibliometric review identifies key trends, maps out research networks, and highlights major developments in this fast-moving field. Lastly, it discusses the ethical concerns and practical challenges of using LLMs in BHI, such as data privacy and reliable medical recommendations. Looking ahead, we consider how LLMs could further transform biomedical research as well as healthcare delivery and patient outcomes. This bibliometric review serves as a resource for stakeholders in healthcare, including researchers, clinicians, and policymakers, to understand the current state and future potential of LLMs in BHI.
Abstract:Recent years have witnessed the rapid development of large language models (LLMs) in various domains. To better serve the large number of Chinese users, many commercial vendors in China have adopted localization strategies, training and providing local LLMs specifically customized for Chinese users. Furthermore, looking ahead, one of the key future applications of LLMs will be practical deployment in industrial production by enterprises and users in those sectors. However, the accuracy and robustness of LLMs in industrial scenarios have not been well studied. In this paper, we present a comprehensive empirical study on the accuracy and robustness of LLMs in the context of the Chinese industrial production area. We manually collected 1,200 domain-specific problems from 8 different industrial sectors to evaluate LLM accuracy. Furthermore, we designed a metamorphic testing framework containing four industrial-specific stability categories with eight abilities, totaling 13,631 questions with variants to evaluate LLM robustness. In total, we evaluated 9 different LLMs developed by Chinese vendors, as well as four different LLMs developed by global vendors. Our major findings include: (1) Current LLMs exhibit low accuracy in Chinese industrial contexts, with all LLMs scoring less than 0.6. (2) The robustness scores vary across industrial sectors, and local LLMs overall perform worse than global ones. (3) LLM robustness differs significantly across abilities. Global LLMs are more robust under logical-related variants, while advanced local LLMs perform better on problems related to understanding Chinese industrial terminology. Our study results provide valuable guidance for understanding and promoting the industrial domain capabilities of LLMs from both development and industrial enterprise perspectives. The results further motivate possible research directions and tooling support.