Abstract:Few-shot defect multi-classification (FSDMC) is an emerging trend in quality control within industrial manufacturing. However, current FSDMC research often lacks generalizability due to its focus on specific datasets. Additionally, defect classification heavily relies on contextual information within images, and existing methods fall short of effectively extracting this information. To address these challenges, we propose a general FSDMC framework called MVREC, which offers two primary advantages: (1) MVREC extracts general features for defect instances by incorporating the pre-trained AlphaCLIP model. (2) It utilizes a region-context framework to enhance defect features by leveraging mask region input and multi-view context augmentation. Furthermore, Few-shot Zip-Adapter(-F) classifiers within the model are introduced to cache the visual features of the support set and perform few-shot classification. We also introduce MVTec-FS, a new FSDMC benchmark based on MVTec AD, which includes 1228 defect images with instance-level mask annotations and 46 defect types. Extensive experiments conducted on MVTec-FS and four additional datasets demonstrate its effectiveness in general defect classification and its ability to incorporate contextual information to improve classification performance. Code: https://github.com/ShuaiLYU/MVREC
Abstract:Task-oriented semantic communications (TSC) enhance radio resource efficiency by transmitting task-relevant semantic information. However, current research often overlooks the inherent semantic distinctions among encoded features. Due to unavoidable channel variations from time and frequency-selective fading, semantically sensitive feature units could be more susceptible to erroneous inference if corrupted by dynamic channels. Therefore, this letter introduces a unified channel-resilient TSC framework via information bottleneck. This framework complements existing TSC approaches by controlling information flow to capture fine-grained feature-level semantic robustness. Experiments on a case study for real-time subchannel allocation validate the framework's effectiveness.
Abstract:Existing K-nearest neighbor (KNN) retrieval-based methods usually conduct industrial anomaly detection in two stages: obtain feature representations with a pre-trained CNN model and perform distance measures for defect detection. However, the features are not fully exploited as they ignore domain bias and the difference of local density in feature space, which limits the detection performance. In this paper, we propose Reducing Biases (REB) in representation by considering the domain bias of the pre-trained model and building a self-supervised learning task for better domain adaption with a defect generation strategy (DefectMaker) imitating the natural defects. Additionally, we propose a local density KNN (LDKNN) to reduce the local density bias and obtain effective anomaly detection. We achieve a promising result of 99.5\% AUROC on the widely used MVTec AD benchmark. We also achieve 88.0\% AUROC on the challenging MVTec LOCO AD dataset and bring an improvement of 4.7\% AUROC to the state-of-the-art result. All results are obtained with smaller backbone networks such as Vgg11 and Resnet18, which indicates the effectiveness and efficiency of REB for practical industrial applications.