Abstract:Legal retrieval techniques play an important role in preserving the fairness and equality of the judicial system. As an annually well-known international competition, COLIEE aims to advance the development of state-of-the-art retrieval models for legal texts. This paper elaborates on the methodology employed by the TQM team in COLIEE2024.Specifically, we explored various lexical matching and semantic retrieval models, with a focus on enhancing the understanding of case relevance. Additionally, we endeavor to integrate various features using the learning-to-rank technique. Furthermore, fine heuristic pre-processing and post-processing methods have been proposed to mitigate irrelevant information. Consequently, our methodology achieved remarkable performance in COLIEE2024, securing first place in Task 1 and third place in Task 3. We anticipate that our proposed approach can contribute valuable insights to the advancement of legal retrieval technology.
Abstract:Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR.