Abstract:The test-time finetuning text-guided image editing method, Forgedit, is capable of tackling general and complex image editing problems given only the input image itself and the target text prompt. During finetuning stage, using the same set of finetuning hyper-paramters every time for every given image, Forgedit remembers and understands the input image in 30 seconds. During editing stage, the workflow of Forgedit might seem complicated. However, in fact, the editing process of Forgedit is not more complex than previous SOTA Imagic, yet completely solves the overfitting problem of Imagic. In this paper, we will elaborate the workflow of Forgedit editing stage with examples. We will show how to tune the hyper-parameters in an efficient way to obtain ideal editing results.
Abstract:Text guided image editing on real images given only the image and the target text prompt as inputs, is a very general and challenging problem, which requires the editing model to reason by itself which part of the image should be edited, to preserve the characteristics of original image, and also to perform complicated non-rigid editing. Previous fine-tuning based solutions are time-consuming and vulnerable to overfitting, limiting their editing capabilities. To tackle these issues, we design a novel text guided image editing method, Forgedit. First, we propose a novel fine-tuning framework which learns to reconstruct the given image in less than one minute by vision language joint learning. Then we introduce vector subtraction and vector projection to explore the proper text embedding for editing. We also find a general property of UNet structures in Diffusion Models and inspired by such a finding, we design forgetting strategies to diminish the fatal overfitting issues and significantly boost the editing abilities of Diffusion Models. Our method, Forgedit, implemented with Stable Diffusion, achieves new state-of-the-art results on the challenging text guided image editing benchmark TEdBench, surpassing the previous SOTA method Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at https://github.com/witcherofresearch/Forgedit.
Abstract:Temporal Reasoning is one important functionality for vision intelligence. In computer vision research community, temporal reasoning is usually studied in the form of video classification, for which many state-of-the-art Neural Network structures and dataset benchmarks are proposed in recent years, especially 3D CNNs and Kinetics. However, some recent works found that current video classification benchmarks contain strong biases towards static features, thus cannot accurately reflect the temporal modeling ability. New video classification benchmarks aiming to eliminate static biases are proposed, with experiments on these new benchmarks showing that the current clip-based 3D CNNs are outperformed by RNN structures and recent video transformers. In this paper, we find that 3D CNNs and their efficient depthwise variants, when video-level sampling strategy is used, are actually able to beat RNNs and recent vision transformers by significant margins on static-unbiased temporal reasoning benchmarks. Further, we propose Temporal Fully Connected Block (TFC Block), an efficient and effective component, which approximates fully connected layers along temporal dimension to obtain video-level receptive field, enhancing the spatiotemporal reasoning ability. With TFC blocks inserted into Video-level 3D CNNs (V3D), our proposed TFCNets establish new state-of-the-art results on synthetic temporal reasoning benchmark, CATER, and real world static-unbiased dataset, Diving48, surpassing all previous methods.
Abstract:In this work, we propose Knowledge Integration Networks (referred as KINet) for video action recognition. KINet is capable of aggregating meaningful context features which are of great importance to identifying an action, such as human information and scene context. We design a three-branch architecture consisting of a main branch for action recognition, and two auxiliary branches for human parsing and scene recognition which allow the model to encode the knowledge of human and scene for action recognition. We explore two pre-trained models as teacher networks to distill the knowledge of human and scene for training the auxiliary tasks of KINet. Furthermore, we propose a two-level knowledge encoding mechanism which contains a Cross Branch Integration (CBI) module for encoding the auxiliary knowledge into medium-level convolutional features, and an Action Knowledge Graph (AKG) for effectively fusing high-level context information. This results in an end-to-end trainable framework where the three tasks can be trained collaboratively, allowing the model to compute strong context knowledge efficiently. The proposed KINet achieves the state-of-the-art performance on a large-scale action recognition benchmark Kinetics-400, with a top-1 accuracy of 77.8%. We further demonstrate that our KINet has strong capability by transferring the Kinetics-trained model to UCF-101, where it obtains 97.8% top-1 accuracy.
Abstract:Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features. In this paper, we propose Video-level 4D Convolutional Neural Networks, referred as V4D, to model the evolution of long-range spatio-temporal representation with 4D convolutions, and at the same time, to preserve strong 3D spatio-temporal representation with residual connections. Specifically, we design a new 4D residual block able to capture inter-clip interactions, which could enhance the representation power of the original clip-level 3D CNNs. The 4D residual blocks can be easily integrated into the existing 3D CNNs to perform long-range modeling hierarchically. We further introduce the training and inference methods for the proposed V4D. Extensive experiments are conducted on three video recognition benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.