Abstract:Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
Abstract:World models aim to endow AI systems with the ability to represent, generate, and interact with dynamic environments in a coherent and temporally consistent manner. While recent video generation models have demonstrated impressive visual quality, they remain limited in real-time interaction, long-horizon consistency, and persistent memory of dynamic scenes, hindering their evolution into practical world models. In this report, we present TeleWorld, a real-time multimodal 4D world modeling framework that unifies video generation, dynamic scene reconstruction, and long-term world memory within a closed-loop system. TeleWorld introduces a novel generation-reconstruction-guidance paradigm, where generated video streams are continuously reconstructed into a dynamic 4D spatio-temporal representation, which in turn guides subsequent generation to maintain spatial, temporal, and physical consistency. To support long-horizon generation with low latency, we employ an autoregressive diffusion-based video model enhanced with Macro-from-Micro Planning (MMPL)--a hierarchical planning method that reduces error accumulation from frame-level to segment-level-alongside efficient Distribution Matching Distillation (DMD), enabling real-time synthesis under practical computational budgets. Our approach achieves seamless integration of dynamic object modeling and static scene representation within a unified 4D framework, advancing world models toward practical, interactive, and computationally accessible systems. Extensive experiments demonstrate that TeleWorld achieves strong performance in both static and dynamic world understanding, long-term consistency, and real-time generation efficiency, positioning it as a practical step toward interactive, memory-enabled world models for multimodal generation and embodied intelligence.



Abstract:Aviation training is a core link in ensuring flight safety, improving industry efficiency and promoting sustainable development. It not only involves flight simulation but also requires the learning of a great deal of professional aviation theory knowledge. In the existing training system, the knowledge is mainly imparted by the the instructors. However, the number of instructors is limited and the professional answers obtained from the Internet are not accurate enough, resulting in low training efficiency. To address this, we introduced LLM, but the basic pre-trained model cannot provide accurate answers to professional fields, so we fine-tuned it. Traditional Supervised Fine-Tuning (SFT) risk generating superficially plausible but factually incorrect responses due to insufficient data coverage. To address this, we employ Direct Preference Optimization(DPO). This paper proposes Retrieval-Augmented LLM Alignment via Direct Preference Optimization(RALA-DPO). We select open source pre-trained LLM Qwen and adapt it to aviation theory training through DPO-based domain alignment. Simultaneously, to mitigate hallucinations caused by training data biases, knowledge obsolescence, or domain knowledge gaps, we implement Retrieval-Augmented Generation(RAG) technology that combines generative and retrieval models. RALA-DPO effectively retrieves relevant information from external knowledge bases and delivers precise and high-quality responses through the generative model. Experimental results demonstrate that RALA-DPO can improve accuracy in response to professional aviation knowledge. With integrated RAG mechanisms, this system can further improve the accuracy of answers and achieve zero-cost knowledge updates simultaneously.
Abstract:Recently, extensive research on image customization (e.g., identity, subject, style, background, etc.) demonstrates strong customization capabilities in large-scale generative models. However, most approaches are designed for specific tasks, restricting their generalizability to combine different types of condition. Developing a unified framework for image customization remains an open challenge. In this paper, we present DreamO, an image customization framework designed to support a wide range of tasks while facilitating seamless integration of multiple conditions. Specifically, DreamO utilizes a diffusion transformer (DiT) framework to uniformly process input of different types. During training, we construct a large-scale training dataset that includes various customization tasks, and we introduce a feature routing constraint to facilitate the precise querying of relevant information from reference images. Additionally, we design a placeholder strategy that associates specific placeholders with conditions at particular positions, enabling control over the placement of conditions in the generated results. Moreover, we employ a progressive training strategy consisting of three stages: an initial stage focused on simple tasks with limited data to establish baseline consistency, a full-scale training stage to comprehensively enhance the customization capabilities, and a final quality alignment stage to correct quality biases introduced by low-quality data. Extensive experiments demonstrate that the proposed DreamO can effectively perform various image customization tasks with high quality and flexibly integrate different types of control conditions.
Abstract:The test-time finetuning text-guided image editing method, Forgedit, is capable of tackling general and complex image editing problems given only the input image itself and the target text prompt. During finetuning stage, using the same set of finetuning hyper-paramters every time for every given image, Forgedit remembers and understands the input image in 30 seconds. During editing stage, the workflow of Forgedit might seem complicated. However, in fact, the editing process of Forgedit is not more complex than previous SOTA Imagic, yet completely solves the overfitting problem of Imagic. In this paper, we will elaborate the workflow of Forgedit editing stage with examples. We will show how to tune the hyper-parameters in an efficient way to obtain ideal editing results.




Abstract:Text guided image editing on real images given only the image and the target text prompt as inputs, is a very general and challenging problem, which requires the editing model to reason by itself which part of the image should be edited, to preserve the characteristics of original image, and also to perform complicated non-rigid editing. Previous fine-tuning based solutions are time-consuming and vulnerable to overfitting, limiting their editing capabilities. To tackle these issues, we design a novel text guided image editing method, Forgedit. First, we propose a novel fine-tuning framework which learns to reconstruct the given image in less than one minute by vision language joint learning. Then we introduce vector subtraction and vector projection to explore the proper text embedding for editing. We also find a general property of UNet structures in Diffusion Models and inspired by such a finding, we design forgetting strategies to diminish the fatal overfitting issues and significantly boost the editing abilities of Diffusion Models. Our method, Forgedit, implemented with Stable Diffusion, achieves new state-of-the-art results on the challenging text guided image editing benchmark TEdBench, surpassing the previous SOTA method Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at https://github.com/witcherofresearch/Forgedit.




Abstract:Temporal Reasoning is one important functionality for vision intelligence. In computer vision research community, temporal reasoning is usually studied in the form of video classification, for which many state-of-the-art Neural Network structures and dataset benchmarks are proposed in recent years, especially 3D CNNs and Kinetics. However, some recent works found that current video classification benchmarks contain strong biases towards static features, thus cannot accurately reflect the temporal modeling ability. New video classification benchmarks aiming to eliminate static biases are proposed, with experiments on these new benchmarks showing that the current clip-based 3D CNNs are outperformed by RNN structures and recent video transformers. In this paper, we find that 3D CNNs and their efficient depthwise variants, when video-level sampling strategy is used, are actually able to beat RNNs and recent vision transformers by significant margins on static-unbiased temporal reasoning benchmarks. Further, we propose Temporal Fully Connected Block (TFC Block), an efficient and effective component, which approximates fully connected layers along temporal dimension to obtain video-level receptive field, enhancing the spatiotemporal reasoning ability. With TFC blocks inserted into Video-level 3D CNNs (V3D), our proposed TFCNets establish new state-of-the-art results on synthetic temporal reasoning benchmark, CATER, and real world static-unbiased dataset, Diving48, surpassing all previous methods.




Abstract:In this work, we propose Knowledge Integration Networks (referred as KINet) for video action recognition. KINet is capable of aggregating meaningful context features which are of great importance to identifying an action, such as human information and scene context. We design a three-branch architecture consisting of a main branch for action recognition, and two auxiliary branches for human parsing and scene recognition which allow the model to encode the knowledge of human and scene for action recognition. We explore two pre-trained models as teacher networks to distill the knowledge of human and scene for training the auxiliary tasks of KINet. Furthermore, we propose a two-level knowledge encoding mechanism which contains a Cross Branch Integration (CBI) module for encoding the auxiliary knowledge into medium-level convolutional features, and an Action Knowledge Graph (AKG) for effectively fusing high-level context information. This results in an end-to-end trainable framework where the three tasks can be trained collaboratively, allowing the model to compute strong context knowledge efficiently. The proposed KINet achieves the state-of-the-art performance on a large-scale action recognition benchmark Kinetics-400, with a top-1 accuracy of 77.8%. We further demonstrate that our KINet has strong capability by transferring the Kinetics-trained model to UCF-101, where it obtains 97.8% top-1 accuracy.




Abstract:Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features. In this paper, we propose Video-level 4D Convolutional Neural Networks, referred as V4D, to model the evolution of long-range spatio-temporal representation with 4D convolutions, and at the same time, to preserve strong 3D spatio-temporal representation with residual connections. Specifically, we design a new 4D residual block able to capture inter-clip interactions, which could enhance the representation power of the original clip-level 3D CNNs. The 4D residual blocks can be easily integrated into the existing 3D CNNs to perform long-range modeling hierarchically. We further introduce the training and inference methods for the proposed V4D. Extensive experiments are conducted on three video recognition benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.