https://github.com/witcherofresearch/Forgedit.
Text guided image editing on real images given only the image and the target text prompt as inputs, is a very general and challenging problem, which requires the editing model to reason by itself which part of the image should be edited, to preserve the characteristics of original image, and also to perform complicated non-rigid editing. Previous fine-tuning based solutions are time-consuming and vulnerable to overfitting, limiting their editing capabilities. To tackle these issues, we design a novel text guided image editing method, Forgedit. First, we propose a novel fine-tuning framework which learns to reconstruct the given image in less than one minute by vision language joint learning. Then we introduce vector subtraction and vector projection to explore the proper text embedding for editing. We also find a general property of UNet structures in Diffusion Models and inspired by such a finding, we design forgetting strategies to diminish the fatal overfitting issues and significantly boost the editing abilities of Diffusion Models. Our method, Forgedit, implemented with Stable Diffusion, achieves new state-of-the-art results on the challenging text guided image editing benchmark TEdBench, surpassing the previous SOTA method Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at