James
Abstract:An LLM is pretrained on trillions of tokens, but the pretrained LLM may still generate undesired responses. To solve this problem, alignment techniques such as RLHF, DPO and KTO are proposed. However, these alignment techniques have limitations. For example, RLHF requires training the reward model and policy separately, which is complex, time-consuming, memory intensive and unstable during training processes. DPO proposes a mapping between an optimal policy and a reward, greatly simplifying the training process of RLHF. However, it can not take full advantages of a reward model and it is limited to pairwise preference data. In this paper, we propose \textbf{UN}ified \textbf{A}lignment (UNA) which unifies RLHF/PPO, DPO and KTO. Firstly, we mathematically prove that given the classical RLHF objective, the optimal policy is induced by a generalize implicit reward function. With this novel mapping between a reward model and an optimal policy, UNA can 1. unify RLHF/PPO, DPO and KTO into a supervised learning of minimizing the difference between an implicit reward and an explicit reward; 2. outperform RLHF/PPO while simplify, stabilize, speed up and reduce memory burden of RL fine-tuning process; 3. accommodate different feedback types including pairwise, binary and scalar feedback. Downstream experiments show UNA outperforms DPO, KTO and RLHF.
Abstract:With advancements in self-supervised learning, the availability of trillions tokens in a pre-training corpus, instruction fine-tuning, and the development of large Transformers with billions of parameters, large language models (LLMs) are now capable of generating factual and coherent responses to human queries. However, the mixed quality of training data can lead to the generation of undesired responses, presenting a significant challenge. Over the past two years, various methods have been proposed from different perspectives to enhance LLMs, particularly in aligning them with human expectation. Despite these efforts, there has not been a comprehensive survey paper that categorizes and details these approaches. In this work, we aim to address this gap by categorizing these papers into distinct topics and providing detailed explanations of each alignment method, thereby helping readers gain a thorough understanding of the current state of the field.
Abstract:Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-trained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.