Claire
Abstract:LLMs have demonstrated impressive proficiency in generating coherent and high-quality text, making them valuable across a range of text-generation tasks. However, rigorous evaluation of this generated content is crucial, as ensuring its quality remains a significant challenge due to persistent issues such as factual inaccuracies and hallucinations. This paper introduces two fine-tuned general-purpose LLM autoevaluators, REC-12B and REC-70B, specifically designed to evaluate generated text across several dimensions: faithfulness, instruction following, coherence, and completeness. These models not only provide ratings for these metrics but also offer detailed explanations and verifiable citations, thereby enhancing trust in the content. Moreover, the models support various citation modes, accommodating different requirements for latency and granularity. Extensive evaluations on diverse benchmarks demonstrate that our general-purpose LLM auto-evaluator, REC-70B, outperforms state-of-the-art LLMs, excelling in content evaluation by delivering better quality explanations and citations with minimal bias. It achieves Rank \#1 as a generative model on the RewardBench leaderboard\footnote{\url{https://huggingface.co/spaces/allenai/reward-bench}} under the model name \texttt{TextEval-Llama3.1-70B}. Our REC dataset and models are released at \url{https://github.com/adelaidehsu/REC}.
Abstract:Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-trained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.