Abstract:The rapid proliferation of LLMs has created a critical evaluation paradox: while LLMs claim multilingual proficiency, comprehensive non-machine-translated benchmarks exist for fewer than 30 languages, leaving >98% of the world's 7,000 languages in an empirical void. Traditional benchmark construction faces scaling challenges such as cost, scarcity of domain experts, and data contamination. We evaluate the validity of a simpler alternative: can translation quality alone indicate a model's broader multilingual capabilities? Through systematic evaluation of 14 models (1B-72B parameters) across 9 diverse benchmarks and 7 translation metrics, we find that translation performance is a good indicator of downstream task success (e.g., Phi-4, median Pearson r: MetricX = 0.89, xCOMET = 0.91, SSA-COMET = 0.87). These results suggest that the representational abilities supporting faithful translation overlap with those required for multilingual understanding. Translation quality, thus emerges as a strong, inexpensive first-pass proxy of multilingual performance, enabling a translation-first screening with targeted follow-up for specific tasks.
Abstract:Multi-turn interactions with language models (LMs) pose critical safety risks, as harmful intent can be strategically spread across exchanges. Yet, the vast majority of prior work has focused on single-turn safety, while adaptability and diversity remain among the key challenges of multi-turn red-teaming. To address these challenges, we present X-Teaming, a scalable framework that systematically explores how seemingly harmless interactions escalate into harmful outcomes and generates corresponding attack scenarios. X-Teaming employs collaborative agents for planning, attack optimization, and verification, achieving state-of-the-art multi-turn jailbreak effectiveness and diversity with success rates up to 98.1% across representative leading open-weight and closed-source models. In particular, X-Teaming achieves a 96.2% attack success rate against the latest Claude 3.7 Sonnet model, which has been considered nearly immune to single-turn attacks. Building on X-Teaming, we introduce XGuard-Train, an open-source multi-turn safety training dataset that is 20x larger than the previous best resource, comprising 30K interactive jailbreaks, designed to enable robust multi-turn safety alignment for LMs. Our work offers essential tools and insights for mitigating sophisticated conversational attacks, advancing the multi-turn safety of LMs.
Abstract:Despite comprising one-third of global languages, African languages are critically underrepresented in Artificial Intelligence (AI), threatening linguistic diversity and cultural heritage. Ghanaian languages, in particular, face an alarming decline, with documented extinction and several at risk. This study pioneers a comprehensive survey of Natural Language Processing (NLP) research focused on Ghanaian languages, identifying methodologies, datasets, and techniques employed. Additionally, we create a detailed roadmap outlining challenges, best practices, and future directions, aiming to improve accessibility for researchers. This work serves as a foundational resource for Ghanaian NLP research and underscores the critical need for integrating global linguistic diversity into AI development.