Abstract:Ptychography is a computational method of microscopy that recovers high-resolution transmission images of samples from a series of diffraction patterns. While conventional phase retrieval algorithms can iteratively recover the images, they require oversampled diffraction patterns, incur significant computational costs, and struggle to recover the absolute phase of the sample's transmission function. Deep learning algorithms for ptychography are a promising approach to resolving the limitations of iterative algorithms. We present PtychoFormer, a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval. PtychoFormer processes subsets of diffraction patterns, generating local inferences that are seamlessly stitched together to produce a high-quality reconstruction. Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE). We also propose the extended-PtychoFormer (ePF), a hybrid approach that combines the benefits of PtychoFormer with the ePIE. ePF minimizes global phase shifts and significantly enhances reconstruction quality, achieving state-of-the-art phase retrieval in ptychography.
Abstract:Machine learning and especially deep learning has had an increasing impact on molecule and materials design. In particular, given the growing access to an abundance of high-quality small molecule data for generative modeling for drug design, results for drug discovery have been promising. However, for many important classes of materials such as catalysts, antioxidants, and metal-organic frameworks, such large datasets are not available. Such families of molecules with limited samples and structural similarities are especially prevalent for industrial applications. As is well-known, retraining and even fine-tuning are challenging on such small datasets. Novel, practically applicable molecules are most often derivatives of well-known molecules, suggesting approaches to addressing data scarcity. To address this problem, we introduce $\textbf{STRIDE}$, a generative molecule workflow that generates novel molecules with an unconditional generative model guided by known molecules without any retraining. We generate molecules outside of the training data from a highly specialized set of antioxidant molecules. Our generated molecules have on average 21.7% lower synthetic accessibility scores and also reduce ionization potential by 5.9% of generated molecules via guiding.
Abstract:From AlexNet to Inception, autoencoders to diffusion models, the development of novel and powerful deep learning models and learning algorithms has proceeded at breakneck speeds. In part, we believe that rapid iteration of model architecture and learning techniques by a large community of researchers over a common representation of the underlying entities has resulted in transferable deep learning knowledge. As a result, model scale, accuracy, fidelity, and compute performance have dramatically increased in computer vision and natural language processing. On the other hand, the lack of a common representation for chemical structure has hampered similar progress. To enable transferable deep learning, we identify the need for a robust 3-dimensional representation of materials such as molecules and crystals. The goal is to enable both materials property prediction and materials generation with 3D structures. While computationally costly, such representations can model a large set of chemical structures. We propose $\textit{ParticleGrid}$, a SIMD-optimized library for 3D structures, that is designed for deep learning applications and to seamlessly integrate with deep learning frameworks. Our highly optimized grid generation allows for generating grids on the fly on the CPU, reducing storage and GPU compute and memory requirements. We show the efficacy of 3D grids generated via $\textit{ParticleGrid}$ and accurately predict molecular energy properties using a 3D convolutional neural network. Our model is able to get 0.006 mean square error and nearly match the values calculated using computationally costly density functional theory at a fraction of the time.
Abstract:Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers. MOFs play an important role in industrial applications such as gas separation, gas purification, and electrolytic catalysis. Important MOF properties such as potential energy are currently computed via techniques such as density functional theory (DFT). Although DFT provides accurate results, it is computationally costly. We propose a machine learning approach for estimating the potential energy of candidate MOFs, decomposing it into separate pair-wise atomic interactions using a graph neural network. Such a technique will allow high-throughput screening of candidates MOFs. We also generate a database of 50,000 spatial configurations and high-quality potential energy values using DFT.
Abstract:Accurate estimation of the run time of computational codes has a number of significant advantages for scientific computing. It is required information for optimal resource allocation, improving turnaround times and utilization of science gateways. Furthermore, it allows users to better plan and schedule their research, streamlining workflows and improving the overall productivity of cyberinfrastructure. Predicting run time is challenging, however. The inputs to scientific codes can be complex and high dimensional. Their relationship to the run time may be highly non-linear, and, in the most general case is completely arbitrary and thus unpredictable (i.e., simply a random mapping from inputs to run time). Most codes are not so arbitrary, however, and there has been significant prior research on predicting the run time of applications and workloads. Such predictions are generally application-specific, however. In this paper, we focus on the Gaussian computational chemistry code. We characterize a data set of runs from the SEAGrid science gateway with a number of different studies. We also explore a number of different potential regression methods and present promising future directions.