Abstract:Diabetic foot ulcers (DFUs) are a leading cause of hospitalizations and lower limb amputations, placing a substantial burden on patients and healthcare systems. Early detection and accurate classification of DFUs are critical for preventing serious complications, yet many patients experience delays in receiving care due to limited access to specialized services. Telehealth has emerged as a promising solution, improving access to care and reducing the need for in-person visits. The integration of artificial intelligence and pattern recognition into telemedicine has further enhanced DFU management by enabling automatic detection, classification, and monitoring from images. Despite advancements in artificial intelligence-driven approaches for DFU image analysis, the application of large language models for DFU image transcription has not yet been explored. To address this gap, we introduce UlcerGPT, a novel multimodal approach leveraging large language and vision models for DFU image transcription. This framework combines advanced vision and language models, such as Large Language and Vision Assistant and Chat Generative Pre-trained Transformer, to transcribe DFU images by jointly detecting, classifying, and localizing regions of interest. Through detailed experiments on a public dataset, evaluated by expert clinicians, UlcerGPT demonstrates promising results in the accuracy and efficiency of DFU transcription, offering potential support for clinicians in delivering timely care via telemedicine.
Abstract:The behavioural and psychological symptoms of dementia, such as agitation and aggression, present a significant health and safety risk in residential care settings. Many care facilities have video cameras in place for digital monitoring of public spaces, which can be leveraged to develop an automated behaviours of risk detection system that can alert the staff to enable timely intervention and prevent the situation from escalating. However, one of the challenges in our previous study was the presence of false alarms due to obstruction of view by activities happening close to the camera. To address this issue, we proposed a novel depth-weighted loss function to train a customized convolutional autoencoder to enforce equivalent importance to the events happening both near and far from the cameras; thus, helping to reduce false alarms and making the method more suitable for real-world deployment. The proposed method was trained using data from nine participants with dementia across three cameras situated in a specialized dementia unit and achieved an area under the curve of receiver operating characteristic of $0.852$, $0.81$ and $0.768$ for the three cameras. Ablation analysis was conducted for the individual components of the proposed method and the performance of the proposed method was investigated for participant-specific and sex-specific behaviours of risk detection. The proposed method performed reasonably well in detecting behaviours of risk in people with dementia motivating further research toward the development of a behaviours of risk detection system suitable for deployment in video surveillance systems in care facilities.
Abstract:Engagement in virtual learning is crucial for a variety of factors including learner satisfaction, performance, and compliance with learning programs, but measuring it is a challenging task. There is therefore considerable interest in utilizing artificial intelligence and affective computing to measure engagement in natural settings as well as on a large scale. This paper introduces a novel, privacy-preserving method for engagement measurement from videos. It uses facial landmarks, which carry no personally identifiable information, extracted from videos via the MediaPipe deep learning solution. The extracted facial landmarks are fed to a Spatial-Temporal Graph Convolutional Network (ST-GCN) to output the engagement level of the learner in the video. To integrate the ordinal nature of the engagement variable into the training process, ST-GCNs undergo training in a novel ordinal learning framework based on transfer learning. Experimental results on two video student engagement measurement datasets show the superiority of the proposed method compared to previous methods with improved state-of-the-art on the EngageNet dataset with a %3.1 improvement in four-class engagement level classification accuracy and on the Online Student Engagement dataset with a %1.5 improvement in binary engagement classification accuracy. The relatively lightweight ST-GCN and its integration with the real-time MediaPipe deep learning solution make the proposed approach capable of being deployed on virtual learning platforms and measuring engagement in real time.
Abstract:Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates. AI-driven virtual rehabilitation, which allows patients to independently complete exercises at home, utilizes AI algorithms to analyze exercise data, providing feedback to patients and updating clinicians on their progress. These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets: while abundant in overall training samples, these datasets often have a limited number of samples for each individual exercise type. This disparity hampers the ability of existing approaches to train generalizable models with such a small sample size per exercise. Addressing this issue, our paper introduces a novel supervised contrastive learning framework with hard and soft negative samples that effectively utilizes the entire dataset to train a single model applicable to all exercise types. This model, with a Spatial-Temporal Graph Convolutional Network (ST-GCN) architecture, demonstrated enhanced generalizability across exercises and a decrease in overall complexity. Through extensive experiments on three publicly available rehabilitation exercise assessment datasets, the University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD), IntelliRehabDS (IRDS), and KInematic assessment of MOvement and clinical scores for remote monitoring of physical REhabilitation (KIMORE), our method has shown to surpass existing methods, setting a new benchmark in rehabilitation exercise assessment accuracy.
Abstract:Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep-learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.
Abstract:Falls are a major cause of injuries and deaths among older adults worldwide. Accurate fall detection can help reduce potential injuries and additional health complications. Different types of video modalities can be used in a home setting to detect falls, including RGB, Infrared, and Thermal cameras. Anomaly detection frameworks using autoencoders and their variants can be used for fall detection due to the data imbalance that arises from the rarity and diversity of falls. However, the use of reconstruction error in autoencoders can limit the application of networks' structures that propagate information. In this paper, we propose a new multi-objective loss function called Temporal Shift, which aims to predict both future and reconstructed frames within a window of sequential frames. The proposed loss function is evaluated on a semi-naturalistic fall detection dataset containing multiple camera modalities. The autoencoders were trained on normal activities of daily living (ADL) performed by older adults and tested on ADLs and falls performed by young adults. Temporal shift shows significant improvement to a baseline 3D Convolutional autoencoder, an attention U-Net CAE, and a multi-modal neural network. The greatest improvement was observed in an attention U-Net model improving by 0.20 AUC ROC for a single camera when compared to reconstruction alone. With significant improvement across different models, this approach has the potential to be widely adopted and improve anomaly detection capabilities in other settings besides fall detection.
Abstract:Diabetic Foot Ulcer (DFU) is a serious skin wound requiring specialized care. However, real DFU datasets are limited, hindering clinical training and research activities. In recent years, generative adversarial networks and diffusion models have emerged as powerful tools for generating synthetic images with remarkable realism and diversity in many applications. This paper explores the potential of diffusion models for synthesizing DFU images and evaluates their authenticity through expert clinician assessments. Additionally, evaluation metrics such as Frechet Inception Distance (FID) and Kernel Inception Distance (KID) are examined to assess the quality of the synthetic DFU images. A dataset of 2,000 DFU images is used for training the diffusion model, and the synthetic images are generated by applying diffusion processes. The results indicate that the diffusion model successfully synthesizes visually indistinguishable DFU images. 70% of the time, clinicians marked synthetic DFU images as real DFUs. However, clinicians demonstrate higher unanimous confidence in rating real images than synthetic ones. The study also reveals that FID and KID metrics do not significantly align with clinicians' assessments, suggesting alternative evaluation approaches are needed. The findings highlight the potential of diffusion models for generating synthetic DFU images and their impact on medical training programs and research in wound detection and classification.
Abstract:Exercise-based rehabilitation programs have been shown to enhance quality of life and reduce mortality and rehospitalizations. AI-driven virtual rehabilitation programs enable patients to complete exercises independently at home while AI algorithms can analyze exercise data to provide feedback to patients and report their progress to clinicians. This paper introduces a novel approach to assessing the quality of rehabilitation exercises using RGB video. Sequences of skeletal body joints are extracted from consecutive RGB video frames and analyzed by many-to-one sequential neural networks to evaluate exercise quality. Existing datasets for exercise rehabilitation lack adequate samples for training deep sequential neural networks to generalize effectively. A cross-modal data augmentation approach is proposed to resolve this problem. Visual augmentation techniques are applied to video data, and body joints extracted from the resulting augmented videos are used for training sequential neural networks. Extensive experiments conducted on the KInematic assessment of MOvement and clinical scores for remote monitoring of physical REhabilitation (KIMORE) dataset, demonstrate the superiority of the proposed method over previous baseline approaches. The ablation study highlights a significant enhancement in exercise quality assessment following cross-modal augmentation.
Abstract:Epilepsy affects more than 50 million people worldwide, making it one of the world's most prevalent neurological diseases. The main symptom of epilepsy is seizures, which occur abruptly and can cause serious injury or death. The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face. Most of the previous work is focused at seizure detection, we pivot our focus to seizure prediction problem. We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure. To this end, we developed several supervised deep learning approaches model to identify preictal EEG from normal EEG. We further develop novel unsupervised deep learning approaches to train the models on only normal EEG, and detecting pre-seizure EEG as an anomalous event. These deep learning models were trained and evaluated on two large EEG seizure datasets in a person-specific manner. We found that both supervised and unsupervised approaches are feasible; however, their performance varies depending on the patient, approach and architecture. This new line of research has the potential to develop therapeutic interventions and save human lives.
Abstract:Physical exercise is an essential component of rehabilitation programs that improve quality of life and reduce mortality and re-hospitalization rates. In AI-driven virtual rehabilitation programs, patients complete their exercises independently at home, while AI algorithms analyze the exercise data to provide feedback to patients and report their progress to clinicians. To analyze exercise data, the first step is to segment it into consecutive repetitions. There has been a significant amount of research performed on segmenting and counting the repetitive activities of healthy individuals using raw video data, which raises concerns regarding privacy and is computationally intensive. Previous research on patients' rehabilitation exercise segmentation relied on data collected by multiple wearable sensors, which are difficult to use at home by rehabilitation patients. Compared to healthy individuals, segmenting and counting exercise repetitions in patients is more challenging because of the irregular repetition duration and the variation between repetitions. This paper presents a novel approach for segmenting and counting the repetitions of rehabilitation exercises performed by patients, based on their skeletal body joints. Skeletal body joints can be acquired through depth cameras or computer vision techniques applied to RGB videos of patients. Various sequential neural networks are designed to analyze the sequences of skeletal body joints and perform repetition segmentation and counting. Extensive experiments on three publicly available rehabilitation exercise datasets, KIMORE, UI-PRMD, and IntelliRehabDS, demonstrate the superiority of the proposed method compared to previous methods. The proposed method enables accurate exercise analysis while preserving privacy, facilitating the effective delivery of virtual rehabilitation programs.