Abstract:Diabetic foot ulcers (DFUs) are a leading cause of hospitalizations and lower limb amputations, placing a substantial burden on patients and healthcare systems. Early detection and accurate classification of DFUs are critical for preventing serious complications, yet many patients experience delays in receiving care due to limited access to specialized services. Telehealth has emerged as a promising solution, improving access to care and reducing the need for in-person visits. The integration of artificial intelligence and pattern recognition into telemedicine has further enhanced DFU management by enabling automatic detection, classification, and monitoring from images. Despite advancements in artificial intelligence-driven approaches for DFU image analysis, the application of large language models for DFU image transcription has not yet been explored. To address this gap, we introduce UlcerGPT, a novel multimodal approach leveraging large language and vision models for DFU image transcription. This framework combines advanced vision and language models, such as Large Language and Vision Assistant and Chat Generative Pre-trained Transformer, to transcribe DFU images by jointly detecting, classifying, and localizing regions of interest. Through detailed experiments on a public dataset, evaluated by expert clinicians, UlcerGPT demonstrates promising results in the accuracy and efficiency of DFU transcription, offering potential support for clinicians in delivering timely care via telemedicine.
Abstract:Diabetic Foot Ulcer (DFU) is a condition requiring constant monitoring and evaluations for treatment. DFU patient population is on the rise and will soon outpace the available health resources. Autonomous monitoring and evaluation of DFU wounds is a much-needed area in health care. In this paper, we evaluate and identify the most accurate feature extractor that is the core basis for developing a deep-learning wound detection network. For the evaluation, we used mAP and F1-score on the publicly available DFU2020 dataset. A combination of UNet and EfficientNetb3 feature extractor resulted in the best evaluation among the 14 networks compared. UNet and Efficientnetb3 can be used as the classifier in the development of a comprehensive DFU domain-specific autonomous wound detection pipeline.
Abstract:Diabetic Foot Ulcer (DFU) is a serious skin wound requiring specialized care. However, real DFU datasets are limited, hindering clinical training and research activities. In recent years, generative adversarial networks and diffusion models have emerged as powerful tools for generating synthetic images with remarkable realism and diversity in many applications. This paper explores the potential of diffusion models for synthesizing DFU images and evaluates their authenticity through expert clinician assessments. Additionally, evaluation metrics such as Frechet Inception Distance (FID) and Kernel Inception Distance (KID) are examined to assess the quality of the synthetic DFU images. A dataset of 2,000 DFU images is used for training the diffusion model, and the synthetic images are generated by applying diffusion processes. The results indicate that the diffusion model successfully synthesizes visually indistinguishable DFU images. 70% of the time, clinicians marked synthetic DFU images as real DFUs. However, clinicians demonstrate higher unanimous confidence in rating real images than synthetic ones. The study also reveals that FID and KID metrics do not significantly align with clinicians' assessments, suggesting alternative evaluation approaches are needed. The findings highlight the potential of diffusion models for generating synthetic DFU images and their impact on medical training programs and research in wound detection and classification.