Abstract:The behavioural and psychological symptoms of dementia, such as agitation and aggression, present a significant health and safety risk in residential care settings. Many care facilities have video cameras in place for digital monitoring of public spaces, which can be leveraged to develop an automated behaviours of risk detection system that can alert the staff to enable timely intervention and prevent the situation from escalating. However, one of the challenges in our previous study was the presence of false alarms due to obstruction of view by activities happening close to the camera. To address this issue, we proposed a novel depth-weighted loss function to train a customized convolutional autoencoder to enforce equivalent importance to the events happening both near and far from the cameras; thus, helping to reduce false alarms and making the method more suitable for real-world deployment. The proposed method was trained using data from nine participants with dementia across three cameras situated in a specialized dementia unit and achieved an area under the curve of receiver operating characteristic of $0.852$, $0.81$ and $0.768$ for the three cameras. Ablation analysis was conducted for the individual components of the proposed method and the performance of the proposed method was investigated for participant-specific and sex-specific behaviours of risk detection. The proposed method performed reasonably well in detecting behaviours of risk in people with dementia motivating further research toward the development of a behaviours of risk detection system suitable for deployment in video surveillance systems in care facilities.
Abstract:The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
Abstract:People living with dementia often exhibit behavioural and psychological symptoms of dementia that can put their and others' safety at risk. Existing video surveillance systems in long-term care facilities can be used to monitor such behaviours of risk to alert the staff to prevent potential injuries or death in some cases. However, these behaviours of risk events are heterogeneous and infrequent in comparison to normal events. Moreover, analyzing raw videos can also raise privacy concerns. In this paper, we present two novel privacy-protecting video-based anomaly detection approaches to detect behaviours of risks in people with dementia. We either extracted body pose information as skeletons and use semantic segmentation masks to replace multiple humans in the scene with their semantic boundaries. Our work differs from most existing approaches for video anomaly detection that focus on appearance-based features, which can put the privacy of a person at risk and is also susceptible to pixel-based noise, including illumination and viewing direction. We used anonymized videos of normal activities to train customized spatio-temporal convolutional autoencoders and identify behaviours of risk as anomalies. We show our results on a real-world study conducted in a dementia care unit with patients with dementia, containing approximately 21 hours of normal activities data for training and 9 hours of data containing normal and behaviours of risk events for testing. We compared our approaches with the original RGB videos and obtained an equivalent area under the receiver operating characteristic curve performance of 0.807 for the skeleton-based approach and 0.823 for the segmentation mask-based approach. This is one of the first studies to incorporate privacy for the detection of behaviours of risks in people with dementia.
Abstract:One-class classification (OCC) needs samples from only a single class to train the classifier. Recently, an auto-associative kernel extreme learning machine was developed for the OCC task. This paper introduces a novel extension of this classifier by embedding minimum variance information within its architecture and is referred to as VAAKELM. The minimum variance embedding forces the network output weights to focus in regions of low variance and reduces the intra-class variance. This leads to a better separation of target samples and outliers, resulting in an improvement in the generalization performance of the classifier. The proposed classifier follows a reconstruction-based approach to OCC and minimizes the reconstruction error by using the kernel extreme learning machine as the base classifier. It uses the deviation in reconstruction error to identify the outliers. We perform experiments on 15 small-size and 10 medium-size one-class benchmark datasets to demonstrate the efficiency of the proposed classifier. We compare the results with 13 existing one-class classifiers by considering the mean F1 score as the comparison metric. The experimental results show that VAAKELM consistently performs better than the existing classifiers, making it a viable alternative for the OCC task.