Abstract:In this paper, we propose a deep-learning-based channel estimation scheme in an orthogonal frequency division multiplexing (OFDM) system. Our proposed method, named Single Slot Recurrence Along Frequency Network (SisRafNet), is based on a novel study of recurrent models for exploiting sequential behavior of channels across frequencies. Utilizing the fact that wireless channels have a high degree of correlation across frequencies, we employ recurrent neural network techniques within a single OFDM slot, thus overcoming the latency and memory constraints typically associated with recurrence based methods. The proposed SisRafNet delivers superior estimation performance compared to existing deep-learning-based channel estimation techniques and the performance has been validated on a wide range of 3rd Generation Partnership Project (3GPP) compliant channel scenarios at multiple signal-to-noise ratios.
Abstract:Spatial frequency analysis and transforms serve a central role in most engineered image and video lossy codecs, but are rarely employed in neural network (NN)-based approaches. We propose a novel NN-based image coding framework that utilizes forward wavelet transforms to decompose the input signal by spatial frequency. Our encoder generates separate bitstreams for each latent representation of low and high frequencies. This enables our decoder to selectively decode bitstreams in a quality-scalable manner. Hence, the decoder can produce an enhanced image by using an enhancement bitstream in addition to the base bitstream. Furthermore, our method is able to enhance only a specific region of interest (ROI) by using a corresponding part of the enhancement latent representation. Our experiments demonstrate that the proposed method shows competitive rate-distortion performance compared to several non-scalable image codecs. We also showcase the effectiveness of our two-level quality scalability, as well as its practicality in ROI quality enhancement.
Abstract:Hybrid beamforming has evolved as a promising technology that offers the balance between system performance and design complexity in mmWave MIMO systems. Existing hybrid beamforming methods either impose unit-modulus constraints or a codebook constraint on the analog precoders/combiners, which in turn results in a performance-overhead tradeoff. This paper puts forth a tensor framework to handle the wideband hybrid beamforming problem, with Vandermonde constraints on the analog precoders/combiners. The proposed method strikes the balance between performance, overhead and complexity. Numerical results on a 3GPP link-level test bench reveal the efficacy of the proposed approach relative to the codebook-based method while attaining the same feedback overhead. Moreover, the proposed method is shown to achieve comparable performance to the unit-modulus approaches, with substantial reductions in overhead.