Abstract:This paper introduces a task-specific, model-agnostic framework for evaluating dataset similarity, providing a means to assess and compare dataset realism and quality. Such a framework is crucial for augmenting real-world data, improving benchmarking, and making informed retraining decisions when adapting to new deployment settings, such as different sites or frequency bands. The proposed framework is employed to design metrics based on UMAP topology-preserving dimensionality reduction, leveraging Wasserstein and Euclidean distances on latent space KNN clusters. The designed metrics show correlations above 0.85 between dataset distances and model performances on a channel state information compression unsupervised machine learning task leveraging autoencoder architectures. The results show that the designed metrics outperform traditional methods.
Abstract:High data rate and low-latency vehicle-to-vehicle (V2V) communication are essential for future intelligent transport systems to enable coordination, enhance safety, and support distributed computing and intelligence requirements. Developing effective communication strategies, however, demands realistic test scenarios and datasets. This is important at the high-frequency bands where more spectrum is available, yet harvesting this bandwidth is challenged by the need for direction transmission and the sensitivity of signal propagation to blockages. This work presents the first large-scale multi-modal dataset for studying mmWave vehicle-to-vehicle communications. It presents a two-vehicle testbed that comprises data from a 360-degree camera, four radars, four 60 GHz phased arrays, a 3D lidar, and two precise GPSs. The dataset contains vehicles driving during the day and night for 120 km in intercity and rural settings, with speeds up to 100 km per hour. More than one million objects were detected across all images, from trucks to bicycles. This work further includes detailed dataset statistics that prove the coverage of various situations and highlights how this dataset can enable novel machine-learning applications.