Abstract:Effective channel estimation in sparse and high-dimensional environments is essential for next-generation wireless systems, particularly in large-scale MIMO deployments. This paper introduces a novel framework that leverages digital twins (DTs) as priors to enable efficient zone-specific subspace-based channel estimation (CE). Subspace-based CE significantly reduces feedback overhead by focusing on the dominant channel components, exploiting sparsity in the angular domain while preserving estimation accuracy. While DT channels may exhibit inaccuracies, their coarse-grained subspaces provide a powerful starting point, reducing the search space and accelerating convergence. The framework employs a two-step clustering process on the Grassmann manifold, combined with reinforcement learning (RL), to iteratively calibrate subspaces and align them with real-world counterparts. Simulations show that digital twins not only enable near-optimal performance but also enhance the accuracy of subspace calibration through RL, highlighting their potential as a step towards learnable digital twins.
Abstract:This paper introduces a task-specific, model-agnostic framework for evaluating dataset similarity, providing a means to assess and compare dataset realism and quality. Such a framework is crucial for augmenting real-world data, improving benchmarking, and making informed retraining decisions when adapting to new deployment settings, such as different sites or frequency bands. The proposed framework is employed to design metrics based on UMAP topology-preserving dimensionality reduction, leveraging Wasserstein and Euclidean distances on latent space KNN clusters. The designed metrics show correlations above 0.85 between dataset distances and model performances on a channel state information compression unsupervised machine learning task leveraging autoencoder architectures. The results show that the designed metrics outperform traditional methods.
Abstract:This paper presents the Large Wireless Model (LWM) -- the world's first foundation model for wireless channels. Designed as a task-agnostic model, LWM generates universal, rich, contextualized channel embeddings (features) that potentially enhance performance across a wide range of downstream tasks in wireless communication and sensing systems. Towards this objective, LWM, which has a transformer-based architecture, was pre-trained in a self-supervised manner on large-scale wireless channel datasets. Our results show consistent improvements in classification and regression tasks when using the LWM embeddings compared to raw channel representations, especially in scenarios with high-complexity machine learning tasks and limited training datasets. This LWM's ability to learn from large-scale wireless data opens a promising direction for intelligent systems that can efficiently adapt to diverse tasks with limited data, paving the way for addressing key challenges in wireless communication and sensing systems.
Abstract:Reconfigurable intelligent surfaces (RISs) are envisioned to play a key role in future wireless communication networks. However, channel estimation in RIS-aided wireless networks is challenging due to their passive nature and the large number of reflective elements, leading to high channel estimation overhead. Additionally, conventional methods like beam sweeping, which do not rely on explicit channel state information, often struggle in managing interference in multi-user networks. In this paper, we propose a novel approach that leverages digital twins (DTs) of the physical environments to approximate channels using electromagnetic 3D models and ray tracing, thus relaxing the need for channel estimation and extensive over-the-air computations in RIS-aided wireless networks. To address the digital twins channel approximation errors, we further refine this approach with a DT-specific robust transmission design that reliably meets minimum desired rates. The results show that our method secures these rates over 90% of the time, significantly outperforming beam sweeping, which achieves these rates less than 8% of the time due to its poor management of transmitting power and interference.