Abstract:Traffic signal control plays a crucial role in urban mobility. However, existing methods often struggle to generalize beyond their training environments to unseen scenarios with varying traffic dynamics. We present TransferLight, a novel framework designed for robust generalization across road-networks, diverse traffic conditions and intersection geometries. At its core, we propose a log-distance reward function, offering spatially-aware signal prioritization while remaining adaptable to varied lane configurations - overcoming the limitations of traditional pressure-based rewards. Our hierarchical, heterogeneous, and directed graph neural network architecture effectively captures granular traffic dynamics, enabling transferability to arbitrary intersection layouts. Using a decentralized multi-agent approach, global rewards, and novel state transition priors, we develop a single, weight-tied policy that scales zero-shot to any road network without re-training. Through domain randomization during training, we additionally enhance generalization capabilities. Experimental results validate TransferLight's superior performance in unseen scenarios, advancing practical, generalizable intelligent transportation systems to meet evolving urban traffic demands.
Abstract:Radiologists have preferred visual impressions or 'styles' of X-ray images that are manually adjusted to their needs to support their diagnostic performance. In this work, we propose an automatic and interpretable X-ray style transfer by introducing a trainable version of the Local Laplacian Filter (LLF). From the shape of the LLF's optimized remap function, the characteristics of the style transfer can be inferred and reliability of the algorithm can be ensured. Moreover, we enable the LLF to capture complex X-ray style features by replacing the remap function with a Multi-Layer Perceptron (MLP) and adding a trainable normalization layer. We demonstrate the effectiveness of the proposed method by transforming unprocessed mammographic X-ray images into images that match the style of target mammograms and achieve a Structural Similarity Index (SSIM) of 0.94 compared to 0.82 of the baseline LLF style transfer method from Aubry et al.
Abstract:The increasing use of cloud-based speech assistants has heightened the need for effective speech anonymization, which aims to obscure a speaker's identity while retaining critical information for subsequent tasks. One approach to achieving this is through voice conversion. While existing methods often emphasize complex architectures and training techniques, our research underscores the importance of loss functions inspired by the human auditory system. Our proposed loss functions are model-agnostic, incorporating handcrafted and deep learning-based features to effectively capture quality representations. Through objective and subjective evaluations, we demonstrate that a VQVAE-based model, enhanced with our perception-driven losses, surpasses the vanilla model in terms of naturalness, intelligibility, and prosody while maintaining speaker anonymity. These improvements are consistently observed across various datasets, languages, target speakers, and genders.
Abstract:Speech anonymisation aims to protect speaker identity by changing personal identifiers in speech while retaining linguistic content. Current methods fail to retain prosody and unique speech patterns found in elderly and pathological speech domains, which is essential for remote health monitoring. To address this gap, we propose a voice conversion-based method (DDSP-QbE) using differentiable digital signal processing and query-by-example. The proposed method, trained with novel losses, aids in disentangling linguistic, prosodic, and domain representations, enabling the model to adapt to uncommon speech patterns. Objective and subjective evaluations show that DDSP-QbE significantly outperforms the voice conversion state-of-the-art concerning intelligibility, prosody, and domain preservation across diverse datasets, pathologies, and speakers while maintaining quality and speaker anonymity. Experts validate domain preservation by analysing twelve clinically pertinent domain attributes.
Abstract:The progression of X-ray technology introduces diverse image styles that need to be adapted to the preferences of radiologists. To support this task, we introduce a novel deep learning-based metric that quantifies style differences of non-matching image pairs. At the heart of our metric is an encoder capable of generating X-ray image style representations. This encoder is trained without any explicit knowledge of style distances by exploiting Simple Siamese learning. During inference, the style representations produced by the encoder are used to calculate a distance metric for non-matching image pairs. Our experiments investigate the proposed concept for a disclosed reproducible and a proprietary image processing pipeline along two dimensions: First, we use a t-distributed stochastic neighbor embedding (t-SNE) analysis to illustrate that the encoder outputs provide meaningful and discriminative style representations. Second, the proposed metric calculated from the encoder outputs is shown to quantify style distances for non-matching pairs in good alignment with the human perception. These results confirm that our proposed method is a promising technique to quantify style differences, which can be used for guided style selection as well as automatic optimization of image pipeline parameters.
Abstract:Deep neural networks are applied in more and more areas of everyday life. However, they still lack essential abilities, such as robustly dealing with spatially transformed input signals. Approaches to mitigate this severe robustness issue are limited to two pathways: Either models are implicitly regularised by increased sample variability (data augmentation) or explicitly constrained by hard-coded inductive biases. The limiting factor of the former is the size of the data space, which renders sufficient sample coverage intractable. The latter is limited by the engineering effort required to develop such inductive biases for every possible scenario. Instead, we take inspiration from human behaviour, where percepts are modified by mental or physical actions during inference. We propose a novel technique to emulate such an inference process for neural nets. This is achieved by traversing a sparsified inverse transformation tree during inference using parallel energy-based evaluations. Our proposed inference algorithm, called Inverse Transformation Search (ITS), is model-agnostic and equips the model with zero-shot pseudo-invariance to spatially transformed inputs. We evaluated our method on several benchmark datasets, including a synthesised ImageNet test set. ITS outperforms the utilised baselines on all zero-shot test scenarios.
Abstract:The detailed images produced by Magnetic Resonance Imaging (MRI) provide life-critical information for the diagnosis and treatment of prostate cancer. To provide standardized acquisition, interpretation and usage of the complex MRI images, the PI-RADS v2 guideline was proposed. An automated segmentation following the guideline facilitates consistent and precise lesion detection, staging and treatment. The guideline recommends a division of the prostate into four zones, PZ (peripheral zone), TZ (transition zone), DPU (distal prostatic urethra) and AFS (anterior fibromuscular stroma). Not every zone shares a boundary with the others and is present in every slice. Further, the representations captured by a single model might not suffice for all zones. This motivated us to design a dual-branch convolutional neural network (CNN), where each branch captures the representations of the connected zones separately. Further, the representations from different branches act complementary to each other at the second stage of training, where they are fine-tuned through an unsupervised loss. The loss penalises the difference in predictions from the two branches for the same class. We also incorporate multi-task learning in our framework to further improve the segmentation accuracy. The proposed approach improves the segmentation accuracy of the baseline (mean absolute symmetric distance) by 7.56%, 11.00%, 58.43% and 19.67% for PZ, TZ, DPU and AFS zones respectively.
Abstract:The rising trend of using voice as a means of interacting with smart devices has sparked worries over the protection of users' privacy and data security. These concerns have become more pressing, especially after the European Union's adoption of the General Data Protection Regulation (GDPR). The information contained in an utterance encompasses critical personal details about the speaker, such as their age, gender, socio-cultural origins and more. If there is a security breach and the data is compromised, attackers may utilise the speech data to circumvent the speaker verification systems or imitate authorised users. Therefore, it is pertinent to anonymise the speech data before being shared across devices, such that the source speaker of the utterance cannot be traced. Voice conversion (VC) can be used to achieve speech anonymisation, which involves altering the speaker's characteristics while preserving the linguistic content.
Abstract:Voice conversion (VC) transforms an utterance to sound like another person without changing the linguistic content. A recently proposed generative adversarial network-based VC method, StarGANv2-VC is very successful in generating natural-sounding conversions. However, the method fails to preserve the emotion of the source speaker in the converted samples. Emotion preservation is necessary for natural human-computer interaction. In this paper, we show that StarGANv2-VC fails to disentangle the speaker and emotion representations, pertinent to preserve emotion. Specifically, there is an emotion leakage from the reference audio used to capture the speaker embeddings while training. To counter the problem, we propose novel emotion-aware losses and an unsupervised method which exploits emotion supervision through latent emotion representations. The objective and subjective evaluations prove the efficacy of the proposed strategy over diverse datasets, emotions, gender, etc.
Abstract:Speech anonymisation prevents misuse of spoken data by removing any personal identifier while preserving at least linguistic content. However, emotion preservation is crucial for natural human-computer interaction. The well-known voice conversion technique StarGANv2-VC achieves anonymisation but fails to preserve emotion. This work presents an any-to-many semi-supervised StarGANv2-VC variant trained on partially emotion-labelled non-parallel data. We propose emotion-aware losses computed on the emotion embeddings and acoustic features correlated to emotion. Additionally, we use an emotion classifier to provide direct emotion supervision. Objective and subjective evaluations show that the proposed approach significantly improves emotion preservation over the vanilla StarGANv2-VC. This considerable improvement is seen over diverse datasets, emotions, target speakers, and inter-group conversions without compromising intelligibility and anonymisation.