Abstract:Recent advancements in deep learning, computer vision, and embodied AI have given rise to synthetic causal reasoning video datasets. These datasets facilitate the development of AI algorithms that can reason about physical interactions between objects. However, datasets thus far have primarily focused on elementary physical events such as rolling or falling. There is currently a scarcity of datasets that focus on the physical interactions that humans perform daily with objects in the real world. To address this scarcity, we introduce SPACE: A Simulator for Physical Interactions and Causal Learning in 3D Environments. The SPACE simulator allows us to generate the SPACE dataset, a synthetic video dataset in a 3D environment, to systematically evaluate physics-based models on a range of physical causal reasoning tasks. Inspired by daily object interactions, the SPACE dataset comprises videos depicting three types of physical events: containment, stability and contact. These events make up the vast majority of the basic physical interactions between objects. We then further evaluate it with a state-of-the-art physics-based deep model and show that the SPACE dataset improves the learning of intuitive physics with an approach inspired by curriculum learning. Repository: https://github.com/jiafei1224/SPACE
Abstract:Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting triplets of aspect terms, their associated sentiments, and the opinion terms that provide evidence for the expressed sentiments. Previous approaches to ASTE usually simultaneously extract all three components or first identify the aspect and opinion terms, then pair them up to predict their sentiment polarities. In this work, we present a novel paradigm, ASTE-RL, by regarding the aspect and opinion terms as arguments of the expressed sentiment in a hierarchical reinforcement learning (RL) framework. We first focus on sentiments expressed in a sentence, then identify the target aspect and opinion terms for that sentiment. This takes into account the mutual interactions among the triplet's components while improving exploration and sample efficiency. Furthermore, this hierarchical RLsetup enables us to deal with multiple and overlapping triplets. In our experiments, we evaluate our model on existing datasets from laptop and restaurant domains and show that it achieves state-of-the-art performance. The implementation of this work is publicly available at https://github.com/declare-lab/ASTE-RL.
Abstract:Recognizing the cause behind emotions in text is a fundamental yet under-explored area of research in NLP. Advances in this area hold the potential to improve interpretability and performance in affect-based models. Identifying emotion causes at the utterance level in conversations is particularly challenging due to the intermingling dynamic among the interlocutors. To this end, we introduce the task of recognizing emotion cause in conversations with an accompanying dataset named RECCON. Furthermore, we define different cause types based on the source of the causes and establish strong transformer-based baselines to address two different sub-tasks of RECCON: 1) Causal Span Extraction and 2) Causal Emotion Entailment. The dataset is available at https://github.com/declare-lab/RECCON.