Abstract:Groundbreaking inventions and highly significant performance improvements in deep learning based Natural Language Processing are witnessed through the development of transformer based large Pre-trained Language Models (PLMs). The wide availability of unlabeled data within human generated data deluge along with self-supervised learning strategy helps to accelerate the success of large PLMs in language generation, language understanding, etc. But at the same time, latent historical bias/unfairness in human minds towards a particular gender, race, etc., encoded unintentionally/intentionally into the corpora harms and questions the utility and efficacy of large PLMs in many real-world applications, particularly for the protected groups. In this paper, we present an extensive investigation towards understanding the existence of "Affective Bias" in large PLMs to unveil any biased association of emotions such as anger, fear, joy, etc., towards a particular gender, race or religion with respect to the downstream task of textual emotion detection. We conduct our exploration of affective bias from the very initial stage of corpus level affective bias analysis by searching for imbalanced distribution of affective words within a domain, in large scale corpora that are used to pre-train and fine-tune PLMs. Later, to quantify affective bias in model predictions, we perform an extensive set of class-based and intensity-based evaluations using various bias evaluation corpora. Our results show the existence of statistically significant affective bias in the PLM based emotion detection systems, indicating biased association of certain emotions towards a particular gender, race, and religion.
Abstract:Traditionally, kernel methods rely on the representer theorem which states that the solution to a learning problem is obtained as a linear combination of the data mapped into the reproducing kernel Hilbert space (RKHS). While elegant from theoretical point of view, the theorem is prohibitive for algorithms' scalability to large datasets, and the interpretability of the learned function. In this paper, instead of using the traditional representer theorem, we propose to search for a solution in RKHS that has a pre-image decomposition in the original data space, where the elements don't necessarily correspond to the elements in the training set. Our gradient-based optimisation method then hinges on optimising over possibly sparse elements in the input space, and enables us to obtain a kernel-based model with both primal and dual sparsity. We give theoretical justification on the proposed method's generalization ability via a Rademacher bound. Our experiments demonstrate a better scalability and interpretability with accuracy on par with the traditional kernel-based models.
Abstract:Studies of networked phenomena, such as interactions in online social media, often rely on incomplete data, either because these phenomena are partially observed, or because the data is too large or expensive to acquire all at once. Analysis of incomplete data leads to skewed or misleading results. In this paper, we investigate limitations of learning to complete partially observed networks via node querying. Concretely, we study the following problem: given (i) a partially observed network, (ii) the ability to query nodes for their connections (e.g., by accessing an API), and (iii) a budget on the number of such queries, sequentially learn which nodes to query in order to maximally increase observability. We call this querying process Network Online Learning and present a family of algorithms called NOL*. These algorithms learn to choose which partially observed node to query next based on a parameterized model that is trained online through a process of exploration and exploitation. Extensive experiments on both synthetic and real world networks show that (i) it is possible to sequentially learn to choose which nodes are best to query in a network and (ii) some macroscopic properties of networks, such as the degree distribution and modular structure, impact the potential for learning and the optimal amount of random exploration.
Abstract:Time series are ubiquitous in real world problems and computing distance between two time series is often required in several learning tasks. Computing similarity between time series by ignoring variations in speed or warping is often encountered and dynamic time warping (DTW) is the state of the art. However DTW is not applicable in algorithms which require kernel or vectors. In this paper, we propose a mechanism named WaRTEm to generate vector embeddings of time series such that distance measures in the embedding space exhibit resilience to warping. Therefore, WaRTEm is more widely applicable than DTW. WaRTEm is based on a twin auto-encoder architecture and a training strategy involving warping operators for generating warping resilient embeddings for time series datasets. We evaluate the performance of WaRTEm and observed more than $20\%$ improvement over DTW in multiple real-world datasets.
Abstract:In this paper, we introduce the first method that (1) can complete kernel matrices with completely missing rows and columns as opposed to individual missing kernel values, (2) does not require any of the kernels to be complete a priori, and (3) can tackle non-linear kernels. These aspects are necessary in practical applications such as integrating legacy data sets, learning under sensor failures and learning when measurements are costly for some of the views. The proposed approach predicts missing rows by modelling both within-view and between-view relationships among kernel values. We show, both on simulated data and real world data, that the proposed method outperforms existing techniques in the restricted settings where they are available, and extends applicability to new settings.