Abstract:Malnutrition among newborns is a top public health concern in developing countries. Identification and subsequent growth monitoring are key to successful interventions. However, this is challenging in rural communities where health systems tend to be inaccessible and under-equipped, with poor adherence to protocol. Our goal is to equip health workers and public health systems with a solution for contactless newborn anthropometry in the community. We propose NurtureNet, a multi-task model that fuses visual information (a video taken with a low-cost smartphone) with tabular inputs to regress multiple anthropometry estimates including weight, length, head circumference, and chest circumference. We show that visual proxy tasks of segmentation and keypoint prediction further improve performance. We establish the efficacy of the model through several experiments and achieve a relative error of 3.9% and mean absolute error of 114.3 g for weight estimation. Model compression to 15 MB also allows offline deployment to low-cost smartphones.
Abstract:We propose a second order gradient based method with ADAM and RMSprop for the training of generative adversarial networks. The proposed method is fastest to obtain similar accuracy when compared to prominent second order methods. Unlike state-of-the-art recent methods, it does not require solving a linear system, or it does not require additional mixed second derivative terms. We derive the fixed point iteration corresponding to proposed method, and show that the proposed method is convergent. The proposed method produces better or comparable inception scores, and comparable quality of images compared to other recently proposed state-of-the-art second order methods. Compared to first order methods such as ADAM, it produces significantly better inception scores. The proposed method is compared and validated on popular datasets such as FFHQ, LSUN, CIFAR10, MNIST, and Fashion MNIST for image generation tasks\footnote{Accepted in IJCNN 2023}. Codes: \url{https://github.com/misterpawan/acom}