Abstract:In this paper, we review recent work in media forensics for digital images, video, audio (specifically speech), and documents. For each data modality, we discuss synthesis and manipulation techniques that can be used to create and modify digital media. We then review technological advancements for detecting and quantifying such manipulations. Finally, we consider open issues and suggest directions for future research.
Abstract:Altered and manipulated multimedia is increasingly present and widely distributed via social media platforms. Advanced video manipulation tools enable the generation of highly realistic-looking altered multimedia. While many methods have been presented to detect manipulations, most of them fail when evaluated with data outside of the datasets used in research environments. In order to address this problem, the Deepfake Detection Challenge (DFDC) provides a large dataset of videos containing realistic manipulations and an evaluation system that ensures that methods work quickly and accurately, even when faced with challenging data. In this paper, we introduce a method based on convolutional neural networks (CNNs) and recurrent neural networks (RNNs) that extracts visual and temporal features from faces present in videos to accurately detect manipulations. The method is evaluated with the DFDC dataset, providing competitive results compared to other techniques.
Abstract:Due to the increasing availability and functionality of image editing tools, many forensic techniques such as digital image authentication, source identification and tamper detection are important for forensic image analysis. In this paper, we describe a machine learning based system to address the forensic analysis of scanner devices. The proposed system uses deep-learning to automatically learn the intrinsic features from various scanned images. Our experimental results show that high accuracy can be achieved for source scanner identification. The proposed system can also generate a reliability map that indicates the manipulated regions in an scanned image.