Abstract:As deep neural networks (DNNs) are increasingly used in safety-critical applications, there is a growing concern for their reliability. Even highly trained, high-performant networks are not 100% accurate. However, it is very difficult to predict their behavior during deployment without ground truth. In this paper, we provide a comparative and replicability study on recent approaches that have been proposed to evaluate the reliability of DNNs in deployment. We find that it is hard to run and reproduce the results for these approaches on their replication packages and even more difficult to run them on artifacts other than their own. Further, it is difficult to compare the effectiveness of the approaches, due to the lack of clearly defined evaluation metrics. Our results indicate that more effort is needed in our research community to obtain sound techniques for evaluating the reliability of neural networks in safety-critical domains. To this end, we contribute an evaluation framework that incorporates the considered approaches and enables evaluation on common benchmarks, using common metrics.
Abstract:This paper presents an evaluation of the code representation model Code2vec when trained on the task of detecting security vulnerabilities in C source code. We leverage the open-source library astminer to extract path-contexts from the abstract syntax trees of a corpus of labeled C functions. Code2vec is trained on the resulting path-contexts with the task of classifying a function as vulnerable or non-vulnerable. Using the CodeXGLUE benchmark, we show that the accuracy of Code2vec for this task is comparable to simple transformer-based methods such as pre-trained RoBERTa, and outperforms more naive NLP-based methods. We achieved an accuracy of 61.43% while maintaining low computational requirements relative to larger models.
Abstract:The work presented here applies deep learning to the task of automated cardiac auscultation, i.e. recognizing abnormalities in heart sounds. We describe an automated heart sound classification algorithm that combines the use of time-frequency heat map representations with a deep convolutional neural network (CNN). Given the cost-sensitive nature of misclassification, our CNN architecture is trained using a modified loss function that directly optimizes the trade-off between sensitivity and specificity. We evaluated our algorithm at the 2016 PhysioNet Computing in Cardiology challenge where the objective was to accurately classify normal and abnormal heart sounds from single, short, potentially noisy recordings. Our entry to the challenge achieved a final specificity of 0.95, sensitivity of 0.73 and overall score of 0.84. We achieved the greatest specificity score out of all challenge entries and, using just a single CNN, our algorithm differed in overall score by only 0.02 compared to the top place finisher, which used an ensemble approach.