Abstract:Depth estimation plays a pivotal role in autonomous driving, facilitating a comprehensive understanding of the vehicle's 3D surroundings. Radar, with its robustness to adverse weather conditions and capability to measure distances, has drawn significant interest for radar-camera depth estimation. However, existing algorithms process the inherently noisy and sparse radar data by projecting 3D points onto the image plane for pixel-level feature extraction, overlooking the valuable geometric information contained within the radar point cloud. To address this gap, we propose GET-UP, leveraging attention-enhanced Graph Neural Networks (GNN) to exchange and aggregate both 2D and 3D information from radar data. This approach effectively enriches the feature representation by incorporating spatial relationships compared to traditional methods that rely only on 2D feature extraction. Furthermore, we incorporate a point cloud upsampling task to densify the radar point cloud, rectify point positions, and derive additional 3D features under the guidance of lidar data. Finally, we fuse radar and camera features during the decoding phase for depth estimation. We benchmark our proposed GET-UP on the nuScenes dataset, achieving state-of-the-art performance with a 15.3% and 14.7% improvement in MAE and RMSE over the previously best-performing model.
Abstract:In recent years, approaches based on radar object detection have made significant progress in autonomous driving systems due to their robustness under adverse weather compared to LiDAR. However, the sparsity of radar point clouds poses challenges in achieving precise object detection, highlighting the importance of effective and comprehensive feature extraction technologies. To address this challenge, this paper introduces a comprehensive feature extraction method for radar point clouds. This study first enhances the capability of detection networks by using a plug-and-play module, GeoSPA. It leverages the Lalonde features to explore local geometric patterns. Additionally, a distributed multi-view attention mechanism, DEMVA, is designed to integrate the shared information across the entire dataset with the global information of each individual frame. By employing the two modules, we present our method, MUFASA, which enhances object detection performance through improved feature extraction. The approach is evaluated on the VoD and TJ4DRaDSet datasets to demonstrate its effectiveness. In particular, we achieve state-of-the-art results among radar-based methods on the VoD dataset with the mAP of 50.24%.
Abstract:Depth estimation is critical in autonomous driving for interpreting 3D scenes accurately. Recently, radar-camera depth estimation has become of sufficient interest due to the robustness and low-cost properties of radar. Thus, this paper introduces a two-stage, end-to-end trainable Confidence-aware Fusion Net (CaFNet) for dense depth estimation, combining RGB imagery with sparse and noisy radar point cloud data. The first stage addresses radar-specific challenges, such as ambiguous elevation and noisy measurements, by predicting a radar confidence map and a preliminary coarse depth map. A novel approach is presented for generating the ground truth for the confidence map, which involves associating each radar point with its corresponding object to identify potential projection surfaces. These maps, together with the initial radar input, are processed by a second encoder. For the final depth estimation, we innovate a confidence-aware gated fusion mechanism to integrate radar and image features effectively, thereby enhancing the reliability of the depth map by filtering out radar noise. Our methodology, evaluated on the nuScenes dataset, demonstrates superior performance, improving upon the current leading model by 3.2% in Mean Absolute Error (MAE) and 2.7% in Root Mean Square Error (RMSE).
Abstract:Advancements in Quantum Computing (QC) and Neural Combinatorial Optimization (NCO) represent promising steps in tackling complex computational challenges. On the one hand, Variational Quantum Algorithms such as QAOA can be used to solve a wide range of combinatorial optimization problems. On the other hand, the same class of problems can be solved by NCO, a method that has shown promising results, particularly since the introduction of Graph Neural Networks. Given recent advances in both research areas, we introduce Hamiltonian-based Quantum Reinforcement Learning (QRL), an approach at the intersection of QC and NCO. We model our ansatzes directly on the combinatorial optimization problem's Hamiltonian formulation, which allows us to apply our approach to a broad class of problems. Our ansatzes show favourable trainability properties when compared to the hardware efficient ansatzes, while also not being limited to graph-based problems, unlike previous works. In this work, we evaluate the performance of Hamiltonian-based QRL on a diverse set of combinatorial optimization problems to demonstrate the broad applicability of our approach and compare it to QAOA.
Abstract:Radar and camera fusion yields robustness in perception tasks by leveraging the strength of both sensors. The typical extracted radar point cloud is 2D without height information due to insufficient antennas along the elevation axis, which challenges the network performance. This work introduces a learning-based approach to infer the height of radar points associated with 3D objects. A novel robust regression loss is introduced to address the sparse target challenge. In addition, a multi-task training strategy is employed, emphasizing important features. The average radar absolute height error decreases from 1.69 to 0.25 meters compared to the state-of-the-art height extension method. The estimated target height values are used to preprocess and enrich radar data for downstream perception tasks. Integrating this refined radar information further enhances the performance of existing radar camera fusion models for object detection and depth estimation tasks.
Abstract:Early Exit Neural Networks (EENNs) present a solution to enhance the efficiency of neural network deployments. However, creating EENNs is challenging and requires specialized domain knowledge, due to the large amount of additional design choices. To address this issue, we propose an automated augmentation flow that focuses on converting an existing model into an EENN. It performs all required design decisions for the deployment to heterogeneous or distributed hardware targets: Our framework constructs the EENN architecture, maps its subgraphs to the hardware targets, and configures its decision mechanism. To the best of our knowledge, it is the first framework that is able to perform all of these steps. We evaluated our approach on a collection of Internet-of-Things and standard image classification use cases. For a speech command detection task, our solution was able to reduce the mean operations per inference by 59.67%. For an ECG classification task, it was able to terminate all samples early, reducing the mean inference energy by 74.9% and computations by 78.3%. On CIFAR-10, our solution was able to achieve up to a 58.75% reduction in computations. The search on a ResNet-152 base model for CIFAR-10 took less than nine hours on a laptop CPU. Our proposed approach enables the creation of EENN optimized for IoT environments and can reduce the inference cost of Deep Learning applications on embedded and fog platforms, while also significantly reducing the search cost - making it more accessible for scientists and engineers in industry and research. The low search cost improves the accessibility of EENNs, with the potential to improve the efficiency of neural networks in a wide range of practical applications.
Abstract:Deep Learning is becoming increasingly relevant in Embedded and Internet-of-things applications. However, deploying models on embedded devices poses a challenge due to their resource limitations. This can impact the model's inference accuracy and latency. One potential solution are Early Exit Neural Networks, which adjust model depth dynamically through additional classifiers attached between their hidden layers. However, the real-time termination decision mechanism is critical for the system's efficiency, latency, and sustained accuracy. This paper introduces Difference Detection and Temporal Patience as decision mechanisms for Early Exit Neural Networks. They leverage the temporal correlation present in sensor data streams to efficiently terminate the inference. We evaluate their effectiveness in health monitoring, image classification, and wake-word detection tasks. Our novel contributions were able to reduce the computational footprint compared to established decision mechanisms significantly while maintaining higher accuracy scores. We achieved a reduction of mean operations per inference by up to 80% while maintaining accuracy levels within 5% of the original model. These findings highlight the importance of considering temporal correlation in sensor data to improve the termination decision.
Abstract:Radar sensors offer power-efficient solutions for always-on smart devices, but processing the data streams on resource-constrained embedded platforms remains challenging. This paper presents novel techniques that leverage the temporal correlation present in streaming radar data to enhance the efficiency of Early Exit Neural Networks for Deep Learning inference on embedded devices. These networks add additional classifier branches between the architecture's hidden layers that allow for an early termination of the inference if their result is deemed sufficient enough by an at-runtime decision mechanism. Our methods enable more informed decisions on when to terminate the inference, reducing computational costs while maintaining a minimal loss of accuracy. Our results demonstrate that our techniques save up to 26% of operations per inference over a Single Exit Network and 12% over a confidence-based Early Exit version. Our proposed techniques work on commodity hardware and can be combined with traditional optimizations, making them accessible for resource-constrained embedded platforms commonly used in smart devices. Such efficiency gains enable real-time radar data processing on resource-constrained platforms, allowing for new applications in the context of smart homes, Internet-of-Things, and human-computer interaction.
Abstract:Accurate and robust object detection is critical for autonomous driving. Image-based detectors face difficulties caused by low visibility in adverse weather conditions. Thus, radar-camera fusion is of particular interest but presents challenges in optimally fusing heterogeneous data sources. To approach this issue, we propose two new radar preprocessing techniques to better align radar and camera data. In addition, we introduce a Multi-Task Cross-Modality Attention-Fusion Network (MCAF-Net) for object detection, which includes two new fusion blocks. These allow for exploiting information from the feature maps more comprehensively. The proposed algorithm jointly detects objects and segments free space, which guides the model to focus on the more relevant part of the scene, namely, the occupied space. Our approach outperforms current state-of-the-art radar-camera fusion-based object detectors in the nuScenes dataset and achieves more robust results in adverse weather conditions and nighttime scenarios.
Abstract:With the growing concern for air quality and its impact on human health, interest in environmental gas monitoring has increased. However, chemi-resistive gas sensing devices are plagued by issues of sensor reproducibility during manufacturing. This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP). This is achieved by identifying sensors that contribute the most to environmental gas concentration estimation via machine learning, and measuring the similarity of feature rankings between sensors to flag deviations or outliers. The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model. Two applications were explored in the study: the detection of wrong behaviors of sensors in the train dataset, and the detection of deviations in the test dataset. By training the GRU with the pruned train dataset, we could reduce computational costs while improving the model performance. Overall, the results show that our approach improves the understanding of sensor behavior, successfully detects sensor deviations down to 5-10% from the normal behavior, and leads to more efficient model preparation and calibration. Our method provides a novel solution for identifying deviating sensors, linking inconsistencies in hardware to sensor-to-sensor variations in the manufacturing process on an AI model-level.