Abstract:We study the geometry of Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in binary classification problems. The key finding is that many of the most commonly used binary classification metrics are merely functions of the composition function $G := F_p \circ F_n^{-1}$, where $F_p(\cdot)$ and $F_n(\cdot)$ are the class-conditional cumulative distribution functions of the classifier scores in the positive and negative classes, respectively. This geometric perspective facilitates the selection of operating points, understanding the effect of decision thresholds, and comparison between classifiers. It also helps explain how the shapes and geometry of ROC/PR curves reflect classifier behavior, providing objective tools for building classifiers optimized for specific applications with context-specific constraints. We further explore the conditions for classifier dominance, present analytical and numerical examples demonstrating the effects of class separability and variance on ROC and PR geometries, and derive a link between the positive-to-negative class leakage function $G(\cdot)$ and the Kullback--Leibler divergence. The framework highlights practical considerations, such as model calibration, cost-sensitive optimization, and operating point selection under real-world capacity constraints, enabling more informed approaches to classifier deployment and decision-making.
Abstract:Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.
Abstract:Cardiovascular diseases are best diagnosed using multiple modalities that assess both the heart's electrical and mechanical functions. While effective, imaging techniques like echocardiography and nuclear imaging are costly and not widely accessible. More affordable technologies, such as simultaneous electrocardiography (ECG) and phonocardiography (PCG), may provide valuable insights into electromechanical coupling and could be useful for prescreening in low-resource settings. Using physical stress test data from the EPHNOGRAM ECG-PCG dataset, collected from 23 healthy male subjects (age: 25.4+/-1.9 yrs), we investigated electromechanical intervals (RR, QT, systolic, and diastolic) and their interactions during exercise, along with hysteresis between cardiac electrical activity and mechanical responses. Time delay analysis revealed distinct temporal relationships between QT, systolic, and diastolic intervals, with RR as the primary driver. The diastolic interval showed near-synchrony with RR, while QT responded to RR interval changes with an average delay of 10.5s, and the systolic interval responded more slowly, with an average delay of 28.3s. We examined QT-RR, systolic-RR, and diastolic-RR hysteresis, finding narrower loops for diastolic RR and wider loops for systolic RR. Significant correlations (average:0.75) were found between heart rate changes and hysteresis loop areas, suggesting the equivalent circular area diameter as a promising biomarker for cardiac function under exercise stress. Deep learning models, including Long Short-Term Memory and Convolutional Neural Networks, estimated the QT, systolic, and diastolic intervals from RR data, confirming the nonlinear relationship between RR and other intervals. Findings highlight a significant cardiac memory effect, linking ECG and PCG morphology and timing to heart rate history.
Abstract:We introduce the ECG-Image-Database, a large and diverse collection of electrocardiogram (ECG) images generated from ECG time-series data, with real-world scanning, imaging, and physical artifacts. We used ECG-Image-Kit, an open-source Python toolkit, to generate realistic images of 12-lead ECG printouts from raw ECG time-series. The images include realistic distortions such as noise, wrinkles, stains, and perspective shifts, generated both digitally and physically. The toolkit was applied to 977 12-lead ECG records from the PTB-XL database and 1,000 from Emory Healthcare to create high-fidelity synthetic ECG images. These unique images were subjected to both programmatic distortions using ECG-Image-Kit and physical effects like soaking, staining, and mold growth, followed by scanning and photography under various lighting conditions to create real-world artifacts. The resulting dataset includes 35,595 software-labeled ECG images with a wide range of imaging artifacts and distortions. The dataset provides ground truth time-series data alongside the images, offering a reference for developing machine and deep learning models for ECG digitization and classification. The images vary in quality, from clear scans of clean papers to noisy photographs of degraded papers, enabling the development of more generalizable digitization algorithms. ECG-Image-Database addresses a critical need for digitizing paper-based and non-digital ECGs for computerized analysis, providing a foundation for developing robust machine and deep learning models capable of converting ECG images into time-series. The dataset aims to serve as a reference for ECG digitization and computerized annotation efforts. ECG-Image-Database was used in the PhysioNet Challenge 2024 on ECG image digitization and classification.
Abstract:Transient responses are an inherent property of recursive filters due to unknown or incorrectly selected initial conditions. Well-designed stable filters are less affected by transient responses, as the impact of initial conditions diminishes over time. However, applications that require very short data acquisition periods (for example, as short as ten seconds), such as biosignals recorded and processed by wearable technologies, can be significantly impacted by transient effects. But how feasible is it to design filters without transient responses? We propose a well-known filter design scheme based on constrained least squares (CLS) optimization to create zero-transient effect notch filters for powerline noise cancellation. We demonstrate that this filter is equivalent to the optimal Wiener smoother in the stationary case. We also discuss its limitations in removing powerline noise with nonstationary amplitude, where a Kalman filter-based formulation can be used instead.
Abstract:Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
Abstract:Hypertension remains a global health concern with a rising prevalence, necessitating effective monitoring and understanding of blood pressure (BP) dynamics. This study delves into the wealth of information derived from BP measurement, a crucial approach in informing our understanding of hypertensive trends. Numerous studies have reported on the relationship between BP variation and various factors. In this research, we leveraged an extensive dataset comprising 75 million records spanning two decades, offering a unique opportunity to explore and analyze BP variations across demographic features such as age, race, and gender. Our findings revealed that gender-based BP variation was not statistically significant, challenging conventional assumptions. Interestingly, systolic blood pressure (SBP) consistently increased with age, while diastolic blood pressure (DBP) displayed a distinctive peak in the forties age group. Moreover, our analysis uncovered intriguing similarities in the distribution of BP among some of the racial groups. This comprehensive investigation contributes to the ongoing discourse on hypertension and underscores the importance of considering diverse demographic factors in understanding BP variations. Our results provide valuable insights that may inform personalized healthcare approaches tailored to specific demographic profiles.
Abstract:Hypertension, defined as blood pressure (BP) that is above normal, holds paramount significance in the realm of public health, as it serves as a critical precursor to various cardiovascular diseases (CVDs) and significantly contributes to elevated mortality rates worldwide. However, many existing BP measurement technologies and standards might be biased because they do not consider clinical outcomes, comorbidities, or demographic factors, making them inconclusive for diagnostic purposes. There is limited data-driven research focused on studying the variance in BP measurements across these variables. In this work, we employed GPT-35-turbo, a large language model (LLM), to automatically extract the mean and standard deviation values of BP for both males and females from a dataset comprising 25 million abstracts sourced from PubMed. 993 article abstracts met our predefined inclusion criteria (i.e., presence of references to blood pressure, units of blood pressure such as mmHg, and mention of biological sex). Based on the automatically-extracted information from these articles, we conducted an analysis of the variations of BP values across biological sex. Our results showed the viability of utilizing LLMs to study the BP variations across different demographic factors.
Abstract:Multimodality and multichannel monitoring have become increasingly popular and accessible in engineering, Internet of Things, wearable devices, and biomedical applications. In these contexts, given the diverse and complex nature of data modalities, the relevance of sensor fusion and sensor selection is heightened. In this note, we study the problem of channel/modality selection and fusion from an information theoretical perspective, focusing on linear and nonlinear signal mixtures corrupted by additive Gaussian noise. We revisit and extend well-known properties of linear noisy data models in estimation and information theory, providing practical insights that assist in the decision-making process between channel (modality) selection and fusion. Using the notion of multichannel signal-to-noise ratio, we derive conditions under which, selection or fusion of multimodal/multichannel data can be beneficial or redundant. This contributes to a better understanding of how to optimize sensor fusion and selection from a theoretical standpoint, aiming to enhance multimodal/multichannel system design, especially for biomedical multichannel/multimodal applications.
Abstract:Machine learning (ML) and deep learning models are extensively used for parameter optimization and regression problems. However, not all inverse problems in ML are ``identifiable,'' indicating that model parameters may not be uniquely determined from the available data and the data model's input-output relationship. In this study, we investigate the notion of model parameter identifiability through a case study focused on parameter estimation from motion sensor data. Utilizing a bipedal-spring mass human walk dynamics model, we generate synthetic data representing diverse gait patterns and conditions. Employing a deep neural network, we attempt to estimate subject-wise parameters, including mass, stiffness, and equilibrium leg length. The results show that while certain parameters can be identified from the observation data, others remain unidentifiable, highlighting that unidentifiability is an intrinsic limitation of the experimental setup, necessitating a change in data collection and experimental scenarios. Beyond this specific case study, the concept of identifiability has broader implications in ML and deep learning. Addressing unidentifiability requires proven identifiable models (with theoretical support), multimodal data fusion techniques, and advancements in model-based machine learning. Understanding and resolving unidentifiability challenges will lead to more reliable and accurate applications across diverse domains, transcending mere model convergence and enhancing the reliability of machine learning models.