Abstract:Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.
Abstract:We introduce the ECG-Image-Database, a large and diverse collection of electrocardiogram (ECG) images generated from ECG time-series data, with real-world scanning, imaging, and physical artifacts. We used ECG-Image-Kit, an open-source Python toolkit, to generate realistic images of 12-lead ECG printouts from raw ECG time-series. The images include realistic distortions such as noise, wrinkles, stains, and perspective shifts, generated both digitally and physically. The toolkit was applied to 977 12-lead ECG records from the PTB-XL database and 1,000 from Emory Healthcare to create high-fidelity synthetic ECG images. These unique images were subjected to both programmatic distortions using ECG-Image-Kit and physical effects like soaking, staining, and mold growth, followed by scanning and photography under various lighting conditions to create real-world artifacts. The resulting dataset includes 35,595 software-labeled ECG images with a wide range of imaging artifacts and distortions. The dataset provides ground truth time-series data alongside the images, offering a reference for developing machine and deep learning models for ECG digitization and classification. The images vary in quality, from clear scans of clean papers to noisy photographs of degraded papers, enabling the development of more generalizable digitization algorithms. ECG-Image-Database addresses a critical need for digitizing paper-based and non-digital ECGs for computerized analysis, providing a foundation for developing robust machine and deep learning models capable of converting ECG images into time-series. The dataset aims to serve as a reference for ECG digitization and computerized annotation efforts. ECG-Image-Database was used in the PhysioNet Challenge 2024 on ECG image digitization and classification.