Abstract:Perinatal complications, defined as conditions that arise during pregnancy, childbirth, and the immediate postpartum period, represent a significant burden on maternal and neonatal health worldwide. Factors contributing to these disparities include limited access to quality healthcare, socioeconomic inequalities, and variations in healthcare infrastructure. Addressing these issues is crucial for improving health outcomes for mothers and newborns, particularly in underserved communities. To mitigate these challenges, we have developed an AI-enabled smartphone application designed to provide decision support at the point-of-care. This tool aims to enhance health monitoring during pregnancy by leveraging machine learning (ML) techniques. The intended use of this application is to assist midwives during routine home visits by offering real-time analysis and providing feedback based on collected data. The application integrates TensorFlow Lite (TFLite) and other Python-based algorithms within a Kotlin framework to process data in real-time. It is designed for use in low-resource settings, where traditional healthcare infrastructure may be lacking. The intended patient population includes pregnant women and new mothers in underserved areas and the developed system was piloted in rural Guatemala. This ML-based solution addresses the critical need for accessible and quality perinatal care by empowering healthcare providers with decision support tools to improve maternal and neonatal health outcomes.
Abstract:In our paper, we present Deep Learning models with a layer differentiated training method which were used for the SHARED TASK@ CONSTRAINT 2021 sub-tasks COVID19 Fake News Detection in English and Hostile Post Detection in Hindi. We propose a Layer Differentiated training procedure for training a pre-trained ULMFiT arXiv:1801.06146 model. We used special tokens to annotate specific parts of the tweets to improve language understanding and gain insights on the model making the tweets more interpretable. The other two submissions included a modified RoBERTa model and a simple Random Forest Classifier. The proposed approach scored a precision and f1 score of 0.96728972 and 0.967324832 respectively for sub-task "COVID19 Fake News Detection in English". Also, Coarse-Grained Hostility f1 Score and Weighted FineGrained f1 score of 0.908648 and 0.533907 respectively for sub-task Hostile Post Detection in Hindi. The proposed approach ranked 61st out of 164 in the sub-task "COVID19 Fake News Detection in English and 18th out of 45 in the sub-task Hostile Post Detection in Hindi".