Abstract:Deep reinforcement learning (DRL) has achieved remarkable success across various domains, such as video games, robotics, and, recently, large language models. However, the computational costs and memory requirements of DRL models often limit their deployment in resource-constrained environments. The challenge underscores the urgent need to explore neural network compression methods to make RDL models more practical and broadly applicable. Our study investigates the impact of two prominent compression methods, quantization and pruning on DRL models. We examine how these techniques influence four performance factors: average return, memory, inference time, and battery utilization across various DRL algorithms and environments. Despite the decrease in model size, we identify that these compression techniques generally do not improve the energy efficiency of DRL models, but the model size decreases. We provide insights into the trade-offs between model compression and DRL performance, offering guidelines for deploying efficient DRL models in resource-constrained settings.
Abstract:Large Language Models (LLMs) can automate or substitute different types of tasks in the software engineering process. This study evaluates the resource utilization and accuracy of LLM in interpreting and executing natural language queries against traditional SQL within relational database management systems. We empirically examine the resource utilization and accuracy of nine LLMs varying from 7 to 34 Billion parameters, including Llama2 7B, Llama2 13B, Mistral, Mixtral, Optimus-7B, SUS-chat-34B, platypus-yi-34b, NeuralHermes-2.5-Mistral-7B and Starling-LM-7B-alpha, using a small transaction dataset. Our findings indicate that using LLMs for database queries incurs significant energy overhead (even small and quantized models), making it an environmentally unfriendly approach. Therefore, we advise against replacing relational databases with LLMs due to their substantial resource utilization.
Abstract:Fitness applications are commonly used to monitor activities within the gym, but they often fail to automatically track indoor activities inside the gym. This study proposes a model that utilizes pose estimation combined with a novel data augmentation method, i.e., rotation matrix. We aim to enhance the classification accuracy of activity recognition based on pose estimation data. Through our experiments, we experiment with different classification algorithms along with image augmentation approaches. Our findings demonstrate that the SVM with SGD optimization, using data augmentation with the Rotation Matrix, yields the most accurate results, achieving a 96% accuracy rate in classifying five physical activities. Conversely, without implementing the data augmentation techniques, the baseline accuracy remains at a modest 64%.
Abstract:In this work, we provide a comprehensive survey of AI music generation tools, including both research projects and commercialized applications. To conduct our analysis, we classified music generation approaches into three categories: parameter-based, text-based, and visual-based classes. Our survey highlights the diverse possibilities and functional features of these tools, which cater to a wide range of users, from regular listeners to professional musicians. We observed that each tool has its own set of advantages and limitations. As a result, we have compiled a comprehensive list of these factors that should be considered during the tool selection process. Moreover, our survey offers critical insights into the underlying mechanisms and challenges of AI music generation.
Abstract:As deep neural networks include a high number of parameters and operations, it can be a challenge to implement these models on devices with limited computational resources. Despite the development of novel pruning methods toward resource-efficient models, it has become evident that these models are not capable of handling "imbalanced" and "limited number of data points". With input and output information, along with the values of the filters, a novel filter pruning method is proposed. Our pruning method considers the fact that all information about the importance of a filter may not be reflected in the value of the filter. Instead, it is reflected in the changes made to the data after the filter is applied to it. In this work, three methods are compared with the same training conditions except for the ranking of each method. We demonstrated that our model performed significantly better than other methods for medical datasets which are inherently imbalanced. When we removed up to 58% of FLOPs for the IDRID dataset and up to 45% for the ISIC dataset, our model was able to yield an equivalent (or even superior) result to the baseline model while other models were unable to achieve similar results. To evaluate FLOP and parameter reduction using our model in real-world settings, we built a smartphone app, where we demonstrated a reduction of up to 79% in memory usage and 72% in prediction time. All codes and parameters for training different models are available at https://github.com/mohofar/Beta-Rank
Abstract:Advances in neural networks enable tackling complex computer vision tasks such as depth estimation of outdoor scenes at unprecedented accuracy. Promising research has been done on depth estimation. However, current efforts are computationally resource-intensive and do not consider the resource constraints of autonomous devices, such as robots and drones. In this work, we present a fast and battery-efficient approach for depth estimation. Our approach devises model-agnostic curriculum-based learning for depth estimation. Our experiments show that the accuracy of our model performs on par with the state-of-the-art models, while its response time outperforms other models by 71%. All codes are available online at https://github.com/fatemehkarimii/LightDepth.
Abstract:Natural language processing applications, such as conversational agents and their question-answering capabilities, are widely used in the real world. Despite the wide popularity of large language models (LLMs), few real-world conversational agents take advantage of LLMs. Extensive resources consumed by LLMs disable developers from integrating them into end-user applications. In this study, we leverage an inverted indexing mechanism combined with LLMs to improve the efficiency of question-answering models for closed-domain questions. Our experiments show that using the index improves the average response time by 97.44%. In addition, due to the reduced search scope, the average BLEU score improved by 0.23 while using the inverted index.
Abstract:Mobile and wearable technologies have promised significant changes to the healthcare industry. Although cutting-edge communication and cloud-based technologies have allowed for these upgrades, their implementation and popularization in low-income countries have been challenging. We propose ODSearch, an On-device Search framework equipped with a natural language interface for mobile and wearable devices. To implement search, ODSearch employs compression and Bloom filter, it provides near real-time search query responses without network dependency. Our experiments were conducted on a mobile phone and smartwatch. We compared ODSearch with current state-of-the-art search mechanisms, and it outperformed them on average by 55 times in execution time, 26 times in energy usage, and 2.3% in memory utilization.
Abstract:Federated Learning marks a turning point in the implementation of decentralized machine learning (especially deep learning) for wireless devices by protecting users' privacy and safeguarding raw data from third-party access. It assigns the learning process independently to each client. First, clients locally train a machine learning model based on local data. Next, clients transfer local updates of model weights and biases (training data) to a server. Then, the server aggregates updates (received from clients) to create a global learning model. However, the continuous transfer between clients and the server increases communication costs and is inefficient from a resource utilization perspective due to the large number of parameters (weights and biases) used by deep learning models. The cost of communication becomes a greater concern when the number of contributing clients and communication rounds increases. In this work, we propose a novel framework, FedZip, that significantly decreases the size of updates while transferring weights from the deep learning model between clients and their servers. FedZip implements Top-z sparsification, uses quantization with clustering, and implements compression with three different encoding methods. FedZip outperforms state-of-the-art compression frameworks and reaches compression rates up to 1085x, and preserves up to 99% of bandwidth and 99% of energy for clients during communication.
Abstract:One of the fundamental challenges for running machine learning algorithms on battery-powered devices is the time and energy needed for computation, as these devices have constraints on resources. There are energy-efficient classifier algorithms, but their accuracy is often sacrificed for resource efficiency. Here, we propose an ultra-low power binary classifier, SEFR, with linear time complexity, both in the training and the testing phases. The SEFR method runs by creating a hyperplane to separate two classes. The weights of this hyperplane are calculated using normalization, and then the bias is computed based on the weights. SEFR is comparable to state-of-the-art classifiers in terms of classification accuracy, but its execution time and energy consumption are 11.02% and 8.67% of the average of state-of-the-art and baseline classifiers. The energy and memory consumption of SEFR is very insignificant, and it even can perform both train and test phases on microcontrollers. We have implemented SEFR on Arduino Uno, and on a dataset with 100 records and 100 features, the training time is 195 milliseconds, and testing for 100 records with 100 features takes 0.73 milliseconds. To the best of our knowledge, this is the first multipurpose algorithm specifically devised for learning on ultra-low power devices.