Abstract:Large language models, sometimes referred to as foundation models, have transformed multiple fields of research. However, smaller languages risk falling behind due to high training costs and small incentives for large companies to train these models. To combat this, the Danish Foundation Models project seeks to provide and maintain open, well-documented, and high-quality foundation models for the Danish language. This is achieved through broad cooperation with public and private institutions, to ensure high data quality and applicability of the trained models. We present the motivation of the project, the current status, and future perspectives.
Abstract:Reinforcement learning policies are often represented by neural networks, but programmatic policies are preferred in some cases because they are more interpretable, amenable to formal verification, or generalize better. While efficient algorithms for learning neural policies exist, learning programmatic policies is challenging. Combining imitation-projection and dataset aggregation with a local search heuristic, we present a simple and direct approach to extracting a programmatic policy from a pretrained neural policy. After examining our local search heuristic on a programming by example problem, we demonstrate our programmatic policy extraction method on a pendulum swing-up problem. Both when trained using a hand crafted expert policy and a learned neural policy, our method discovers simple and interpretable policies that perform almost as well as the original.
Abstract:The past few years have witnessed a growth in size and computational requirements for training and inference with neural networks. Currently, a common approach to address these requirements is to use a heterogeneous distributed environment with a mixture of hardware devices such as CPUs and GPUs. Importantly, the decision of placing parts of the neural models on devices is often made by human experts based on simple heuristics and intuitions. In this paper, we propose a method which learns to optimize device placement for TensorFlow computational graphs. Key to our method is the use of a sequence-to-sequence model to predict which subsets of operations in a TensorFlow graph should run on which of the available devices. The execution time of the predicted placements is then used as the reward signal to optimize the parameters of the sequence-to-sequence model. Our main result is that on Inception-V3 for ImageNet classification, and on RNN LSTM, for language modeling and neural machine translation, our model finds non-trivial device placements that outperform hand-crafted heuristics and traditional algorithmic methods.