Abstract:Inferring the 3D structure underlying a set of multi-view images typically requires solving two co-dependent tasks -- accurate 3D reconstruction requires precise camera poses, and predicting camera poses relies on (implicitly or explicitly) modeling the underlying 3D. The classical framework of analysis by synthesis casts this inference as a joint optimization seeking to explain the observed pixels, and recent instantiations learn expressive 3D representations (e.g., Neural Fields) with gradient-descent-based pose refinement of initial pose estimates. However, given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D. Moreover, large errors in pose estimation may not be easily corrected and can further degrade the inferred 3D. To allow robust 3D reconstruction and pose estimation in this challenging setup, we propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them. We validate our framework across real-world and synthetic datasets in combination with several off-the-shelf pose estimation systems as initialization. We find that it significantly improves the base systems' pose accuracy while yielding high-quality 3D reconstructions that outperform the results from current multi-view reconstruction baselines.
Abstract:The dominant paradigm in 3D human pose estimation that lifts a 2D pose sequence to 3D heavily relies on long-term temporal clues (i.e., using a daunting number of video frames) for improved accuracy, which incurs performance saturation, intractable computation and the non-causal problem. This can be attributed to their inherent inability to perceive spatial context as plain 2D joint coordinates carry no visual cues. To address this issue, we propose a straightforward yet powerful solution: leveraging the readily available intermediate visual representations produced by off-the-shelf (pre-trained) 2D pose detectors -- no finetuning on the 3D task is even needed. The key observation is that, while the pose detector learns to localize 2D joints, such representations (e.g., feature maps) implicitly encode the joint-centric spatial context thanks to the regional operations in backbone networks. We design a simple baseline named Context-Aware PoseFormer to showcase its effectiveness. Without access to any temporal information, the proposed method significantly outperforms its context-agnostic counterpart, PoseFormer, and other state-of-the-art methods using up to hundreds of video frames regarding both speed and precision. Project page: https://qitaozhao.github.io/ContextAware-PoseFormer
Abstract:Recently, transformer-based methods have gained significant success in sequential 2D-to-3D lifting human pose estimation. As a pioneering work, PoseFormer captures spatial relations of human joints in each video frame and human dynamics across frames with cascaded transformer layers and has achieved impressive performance. However, in real scenarios, the performance of PoseFormer and its follow-ups is limited by two factors: (a) The length of the input joint sequence; (b) The quality of 2D joint detection. Existing methods typically apply self-attention to all frames of the input sequence, causing a huge computational burden when the frame number is increased to obtain advanced estimation accuracy, and they are not robust to noise naturally brought by the limited capability of 2D joint detectors. In this paper, we propose PoseFormerV2, which exploits a compact representation of lengthy skeleton sequences in the frequency domain to efficiently scale up the receptive field and boost robustness to noisy 2D joint detection. With minimum modifications to PoseFormer, the proposed method effectively fuses features both in the time domain and frequency domain, enjoying a better speed-accuracy trade-off than its precursor. Extensive experiments on two benchmark datasets (i.e., Human3.6M and MPI-INF-3DHP) demonstrate that the proposed approach significantly outperforms the original PoseFormer and other transformer-based variants. Code is released at \url{https://github.com/QitaoZhao/PoseFormerV2}.