Abstract:Word embeddings and language models have transformed natural language processing (NLP) by facilitating the representation of linguistic elements in continuous vector spaces. This review visits foundational concepts such as the distributional hypothesis and contextual similarity, tracing the evolution from sparse representations like one-hot encoding to dense embeddings including Word2Vec, GloVe, and fastText. We examine both static and contextualized embeddings, underscoring advancements in models such as ELMo, BERT, and GPT and their adaptations for cross-lingual and personalized applications. The discussion extends to sentence and document embeddings, covering aggregation methods and generative topic models, along with the application of embeddings in multimodal domains, including vision, robotics, and cognitive science. Advanced topics such as model compression, interpretability, numerical encoding, and bias mitigation are analyzed, addressing both technical challenges and ethical implications. Additionally, we identify future research directions, emphasizing the need for scalable training techniques, enhanced interpretability, and robust grounding in non-textual modalities. By synthesizing current methodologies and emerging trends, this survey offers researchers and practitioners an in-depth resource to push the boundaries of embedding-based language models.
Abstract:With a focus on natural language processing (NLP) and the role of large language models (LLMs), we explore the intersection of machine learning, deep learning, and artificial intelligence. As artificial intelligence continues to revolutionize fields from healthcare to finance, NLP techniques such as tokenization, text classification, and entity recognition are essential for processing and understanding human language. This paper discusses advanced data preprocessing techniques and the use of frameworks like Hugging Face for implementing transformer-based models. Additionally, it highlights challenges such as handling multilingual data, reducing bias, and ensuring model robustness. By addressing key aspects of data processing and model fine-tuning, this work aims to provide insights into deploying effective and ethically sound AI solutions.
Abstract:With the increasing application of large language models (LLMs) in the medical domain, evaluating these models' performance using benchmark datasets has become crucial. This paper presents a comprehensive survey of various benchmark datasets employed in medical LLM tasks. These datasets span multiple modalities including text, image, and multimodal benchmarks, focusing on different aspects of medical knowledge such as electronic health records (EHRs), doctor-patient dialogues, medical question-answering, and medical image captioning. The survey categorizes the datasets by modality, discussing their significance, data structure, and impact on the development of LLMs for clinical tasks such as diagnosis, report generation, and predictive decision support. Key benchmarks include MIMIC-III, MIMIC-IV, BioASQ, PubMedQA, and CheXpert, which have facilitated advancements in tasks like medical report generation, clinical summarization, and synthetic data generation. The paper summarizes the challenges and opportunities in leveraging these benchmarks for advancing multimodal medical intelligence, emphasizing the need for datasets with a greater degree of language diversity, structured omics data, and innovative approaches to synthesis. This work also provides a foundation for future research in the application of LLMs in medicine, contributing to the evolving field of medical artificial intelligence.
Abstract:Digital Signal Processing (DSP) and Digital Image Processing (DIP) with Machine Learning (ML) and Deep Learning (DL) are popular research areas in Computer Vision and related fields. We highlight transformative applications in image enhancement, filtering techniques, and pattern recognition. By integrating frameworks like the Discrete Fourier Transform (DFT), Z-Transform, and Fourier Transform methods, we enable robust data manipulation and feature extraction essential for AI-driven tasks. Using Python, we implement algorithms that optimize real-time data processing, forming a foundation for scalable, high-performance solutions in computer vision. This work illustrates the potential of ML and DL to advance DSP and DIP methodologies, contributing to artificial intelligence, automated feature extraction, and applications across diverse domains.
Abstract:This book offers an in-depth exploration of object detection and semantic segmentation, combining theoretical foundations with practical applications. It covers state-of-the-art advancements in machine learning and deep learning, with a focus on convolutional neural networks (CNNs), YOLO architectures, and transformer-based approaches like DETR. The book also delves into the integration of artificial intelligence (AI) techniques and large language models for enhanced object detection in complex environments. A thorough discussion of big data analysis is presented, highlighting the importance of data processing, model optimization, and performance evaluation metrics. By bridging the gap between traditional methods and modern deep learning frameworks, this book serves as a comprehensive guide for researchers, data scientists, and engineers aiming to leverage AI-driven methodologies in large-scale object detection tasks.
Abstract:Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation, enabling applications across fields beyond healthcare, software engineering, and conversational systems. Despite these advancements in the past few years, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks. This review analyzes the state of research on these vulnerabilities and presents available defense strategies. We roughly categorize attack approaches into prompt-based, model-based, multimodal, and multilingual, covering techniques such as adversarial prompting, backdoor injections, and cross-modality exploits. We also review various defense mechanisms, including prompt filtering, transformation, alignment techniques, multi-agent defenses, and self-regulation, evaluating their strengths and shortcomings. We also discuss key metrics and benchmarks used to assess LLM safety and robustness, noting challenges like the quantification of attack success in interactive contexts and biases in existing datasets. Identifying current research gaps, we suggest future directions for resilient alignment strategies, advanced defenses against evolving attacks, automation of jailbreak detection, and consideration of ethical and societal impacts. This review emphasizes the need for continued research and cooperation within the AI community to enhance LLM security and ensure their safe deployment.
Abstract:This manuscript presents a comprehensive guide to Automated Machine Learning (AutoML), covering fundamental principles, practical implementations, and future trends. The paper is structured to assist both beginners and experienced practitioners, with detailed discussions on popular AutoML tools such as TPOT, AutoGluon, and Auto-Keras. It also addresses emerging topics like Neural Architecture Search (NAS) and AutoML's applications in deep learning. We believe this work will contribute to ongoing research and development in the field of AI and machine learning.
Abstract:This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
Abstract:This comprehensive review explores the intersection of Large Language Models (LLMs) and cognitive science, examining similarities and differences between LLMs and human cognitive processes. We analyze methods for evaluating LLMs cognitive abilities and discuss their potential as cognitive models. The review covers applications of LLMs in various cognitive fields, highlighting insights gained for cognitive science research. We assess cognitive biases and limitations of LLMs, along with proposed methods for improving their performance. The integration of LLMs with cognitive architectures is examined, revealing promising avenues for enhancing artificial intelligence (AI) capabilities. Key challenges and future research directions are identified, emphasizing the need for continued refinement of LLMs to better align with human cognition. This review provides a balanced perspective on the current state and future potential of LLMs in advancing our understanding of both artificial and human intelligence.