Abstract:Departing from the classic paradigm of data-centric designs, the 6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task. Targeting end-to-end system performance, such techniques are sophisticated as they aim to seamlessly integrate sensing (data acquisition), communication (data transmission), and computation (data processing). Aligned with the paradigm shift, a task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system. In the considered system, local feature vectors, which are extracted from the real-time noisy sensory data on devices, are aggregated over-the-air by exploiting the waveform superposition in a multiuser channel. Then the aggregated features as received at a server are fed into an inference model with the result used for decision making or control of actuators. To design inference-oriented AirComp, the transmit precoders at edge devices and receive beamforming at edge server are jointly optimized to rein in the aggregation error and maximize the inference accuracy. The problem is made tractable by measuring the inference accuracy using a surrogate metric called discriminant gain, which measures the discernibility of two object classes in the application of object/event classification. It is discovered that the conventional AirComp beamforming design for minimizing the mean square error in generic AirComp with respect to the noiseless case may not lead to the optimal classification accuracy. The reason is due to the overlooking of the fact that feature dimensions have different sensitivity towards aggregation errors and are thus of different importance levels for classification. This issue is addressed in this work via a new task-oriented AirComp scheme designed by directly maximizing the derived discriminant gain.
Abstract:This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by integrating the three processes into a joint design. This integrated sensing, computation, and communication (ISCC) design approach, however, leads to a challenging non-convex optimization problem, due to the complicated form of discriminant gain and the device heterogeneity in terms of channel gain, quantization level, and generated feature subsets. Remarkably, the considered non-convex problem can be optimally solved based on the sum-of-ratios method. This gives the optimal ISCC scheme, that jointly determines the transmit power and time allocation at multiple devices for sensing and communication, as well as their quantization bits allocation for computation distortion control. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of our derived optimal ISCC scheme.
Abstract:In this paper, we address the problem of joint sensing, computation, and communication (SC$^{2}$) resource allocation for federated edge learning (FEEL) via a concrete case study of human motion recognition based on wireless sensing in ambient intelligence. First, by analyzing the wireless sensing process in human motion recognition, we find that there exists a thresholding value for the sensing transmit power, exceeding which yields sensing data samples with approximately the same satisfactory quality. Then, the joint SC$^{2}$ resource allocation problem is cast to maximize the convergence speed of FEEL, under the constraints on training time, energy supply, and sensing quality of each edge device. Solving this problem entails solving two subproblems in order: the first one reduces to determine the joint sensing and communication resource allocation that maximizes the total number of samples that can be sensed during the entire training process; the second one concerns the partition of the attained total number of sensed samples over all the communication rounds to determine the batch size at each round for convergence speed maximization. The first subproblem on joint sensing and communication resource allocation is converted to a single-variable optimization problem by exploiting the derived relation between different control variables (resources), which thus allows an efficient solution via one-dimensional grid search. For the second subproblem, it is found that the number of samples to be sensed (or batch size) at each round is a decreasing function of the loss function value attained at the round. Based on this relationship, the approximate optimal batch size at each communication round is derived in closed-form as a function of the round index. Finally, extensive simulation results are provided to validate the superiority of the proposed joint SC$^{2}$ resource allocation scheme.
Abstract:This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.