Abstract:People inherently use experiences of their past while imagining their future, a capability that plays a crucial role in mental health. Resonance is an AI-powered journaling tool designed to augment this ability by offering AI-generated, action-oriented suggestions for future activities based on the user's own past memories. Suggestions are offered when a new memory is logged and are followed by a prompt for the user to imagine carrying out the suggestion. In a two-week randomized controlled study (N=55), we found that using Resonance significantly improved mental health outcomes, reducing the users' PHQ8 scores, a measure of current depression, and increasing their daily positive affect, particularly when they would likely act on the suggestion. Notably, the effectiveness of the suggestions was higher when they were personal, novel, and referenced the user's logged memories. Finally, through open-ended feedback, we discuss the factors that encouraged or hindered the use of the tool.
Abstract:Generative AI is transforming education by enabling personalized, on-demand learning experiences. However, AI tutors lack the ability to assess a learner's cognitive state in real time, limiting their adaptability. Meanwhile, electroencephalography (EEG)-based neuroadaptive systems have successfully enhanced engagement by dynamically adjusting learning content. This paper presents NeuroChat, a proof-of-concept neuroadaptive AI tutor that integrates real-time EEG-based engagement tracking with generative AI. NeuroChat continuously monitors a learner's cognitive engagement and dynamically adjusts content complexity, response style, and pacing using a closed-loop system. We evaluate this approach in a pilot study (n=24), comparing NeuroChat to a standard LLM-based chatbot. Results indicate that NeuroChat enhances cognitive and subjective engagement but does not show an immediate effect on learning outcomes. These findings demonstrate the feasibility of real-time cognitive feedback in LLMs, highlighting new directions for adaptive learning, AI tutoring, and human-AI interaction.
Abstract:Pro-environmental behavior (PEB) is vital to combat climate change, yet turning awareness into intention and action remains elusive. We explore large language models (LLMs) as tools to promote PEB, comparing their impact across 3,200 participants: real humans (n=1,200), simulated humans based on actual participant data (n=1,200), and fully synthetic personas (n=1,200). All three participant groups faced personalized or standard chatbots, or static statements, employing four persuasion strategies (moral foundations, future self-continuity, action orientation, or "freestyle" chosen by the LLM). Results reveal a "synthetic persuasion paradox": synthetic and simulated agents significantly affect their post-intervention PEB stance, while human responses barely shift. Simulated participants better approximate human trends but still overestimate effects. This disconnect underscores LLM's potential for pre-evaluating PEB interventions but warns of its limits in predicting real-world behavior. We call for refined synthetic modeling and sustained and extended human trials to align conversational AI's promise with tangible sustainability outcomes.
Abstract:Marine ecosystems face unprecedented threats from climate change and plastic pollution, yet traditional environmental education often struggles to translate awareness into sustained behavioral change. This paper presents OceanChat, an interactive system leveraging large language models to create conversational AI agents represented as animated marine creatures -- specifically a beluga whale, a jellyfish, and a seahorse -- designed to promote environmental behavior (PEB) and foster awareness through personalized dialogue. Through a between-subjects experiment (N=900), we compared three conditions: (1) Static Scientific Information, providing conventional environmental education through text and images; (2) Static Character Narrative, featuring first-person storytelling from 3D-rendered marine creatures; and (3) Conversational Character Narrative, enabling real-time dialogue with AI-powered marine characters. Our analysis revealed that the Conversational Character Narrative condition significantly increased behavioral intentions and sustainable choice preferences compared to static approaches. The beluga whale character demonstrated consistently stronger emotional engagement across multiple measures, including perceived anthropomorphism and empathy. However, impacts on deeper measures like climate policy support and psychological distance were limited, highlighting the complexity of shifting entrenched beliefs. Our work extends research on sustainability interfaces facilitating PEB and offers design principles for creating emotionally resonant, context-aware AI characters. By balancing anthropomorphism with species authenticity, OceanChat demonstrates how interactive narratives can bridge the gap between environmental knowledge and real-world behavior change.
Abstract:AI is increasingly used to enhance images and videos, both intentionally and unintentionally. As AI editing tools become more integrated into smartphones, users can modify or animate photos into realistic videos. This study examines the impact of AI-altered visuals on false memories--recollections of events that didn't occur or deviate from reality. In a pre-registered study, 200 participants were divided into four conditions of 50 each. Participants viewed original images, completed a filler task, then saw stimuli corresponding to their assigned condition: unedited images, AI-edited images, AI-generated videos, or AI-generated videos of AI-edited images. AI-edited visuals significantly increased false recollections, with AI-generated videos of AI-edited images having the strongest effect (2.05x compared to control). Confidence in false memories was also highest for this condition (1.19x compared to control). We discuss potential applications in HCI, such as therapeutic memory reframing, and challenges in ethical, legal, political, and societal domains.
Abstract:This study investigates psychological factors influencing belief in AI predictions about personal behavior, comparing it to belief in astrology and personality-based predictions. Through an experiment with 238 participants, we examined how cognitive style, paranormal beliefs, AI attitudes, personality traits, and other factors affect perceived validity, reliability, usefulness, and personalization of predictions from different sources. Our findings reveal that belief in AI predictions is positively correlated with belief in predictions based on astrology and personality psychology. Notably, paranormal beliefs and positive AI attitudes significantly increased perceived validity, reliability, usefulness, and personalization of AI predictions. Conscientiousness was negatively correlated with belief in predictions across all sources, and interest in the prediction topic increased believability across predictions. Surprisingly, cognitive style did not significantly influence belief in predictions. These results highlight the "rational superstition" phenomenon in AI, where belief is driven more by mental heuristics and intuition than critical evaluation. We discuss implications for designing AI systems and communication strategies that foster appropriate trust and skepticism. This research contributes to our understanding of the psychology of human-AI interaction and offers insights for the design and deployment of AI systems.
Abstract:This study examines the impact of AI on human false memories -- recollections of events that did not occur or deviate from actual occurrences. It explores false memory induction through suggestive questioning in Human-AI interactions, simulating crime witness interviews. Four conditions were tested: control, survey-based, pre-scripted chatbot, and generative chatbot using a large language model (LLM). Participants (N=200) watched a crime video, then interacted with their assigned AI interviewer or survey, answering questions including five misleading ones. False memories were assessed immediately and after one week. Results show the generative chatbot condition significantly increased false memory formation, inducing over 3 times more immediate false memories than the control and 1.7 times more than the survey method. 36.4% of users' responses to the generative chatbot were misled through the interaction. After one week, the number of false memories induced by generative chatbots remained constant. However, confidence in these false memories remained higher than the control after one week. Moderating factors were explored: users who were less familiar with chatbots but more familiar with AI technology, and more interested in crime investigations, were more susceptible to false memories. These findings highlight the potential risks of using advanced AI in sensitive contexts, like police interviews, emphasizing the need for ethical considerations.
Abstract:Advanced Artificial Intelligence (AI) systems, specifically large language models (LLMs), have the capability to generate not just misinformation, but also deceptive explanations that can justify and propagate false information and erode trust in the truth. We examined the impact of deceptive AI generated explanations on individuals' beliefs in a pre-registered online experiment with 23,840 observations from 1,192 participants. We found that in addition to being more persuasive than accurate and honest explanations, AI-generated deceptive explanations can significantly amplify belief in false news headlines and undermine true ones as compared to AI systems that simply classify the headline incorrectly as being true/false. Moreover, our results show that personal factors such as cognitive reflection and trust in AI do not necessarily protect individuals from these effects caused by deceptive AI generated explanations. Instead, our results show that the logical validity of AI generated deceptive explanations, that is whether the explanation has a causal effect on the truthfulness of the AI's classification, plays a critical role in countering their persuasiveness - with logically invalid explanations being deemed less credible. This underscores the importance of teaching logical reasoning and critical thinking skills to identify logically invalid arguments, fostering greater resilience against advanced AI-driven misinformation.
Abstract:We introduce "Future You," an interactive, brief, single-session, digital chat intervention designed to improve future self-continuity--the degree of connection an individual feels with a temporally distant future self--a characteristic that is positively related to mental health and wellbeing. Our system allows users to chat with a relatable yet AI-powered virtual version of their future selves that is tuned to their future goals and personal qualities. To make the conversation realistic, the system generates a "synthetic memory"--a unique backstory for each user--that creates a throughline between the user's present age (between 18-30) and their life at age 60. The "Future You" character also adopts the persona of an age-progressed image of the user's present self. After a brief interaction with the "Future You" character, users reported decreased anxiety, and increased future self-continuity. This is the first study successfully demonstrating the use of personalized AI-generated characters to improve users' future self-continuity and wellbeing.
Abstract:Programming a robotic is a complex task, as it demands the user to have a good command of specific programming languages and awareness of the robot's physical constraints. We propose a framework that simplifies robot deployment by allowing direct communication using natural language. It uses large language models (LLM) for prompt processing, workspace understanding, and waypoint generation. It also employs Augmented Reality (AR) to provide visual feedback of the planned outcome. We showcase the effectiveness of our framework with a simple pick-and-place task, which we implement on a real robot. Moreover, we present an early concept of expressive robot behavior and skill generation that can be used to communicate with the user and learn new skills (e.g., object grasping).