Abstract:Large Language Models (LLMs) excel in general tasks but struggle with domain-specific challenges, such as specialized terminology and localized regulations. Existing financial LLMs, like FinGPT and BloombergGPT, lack support for the Thai financial domain. We developed a Thai Financial LLM using the Investment Consultant (IC) exam dataset from the Stock Exchange of Thailand. To address dataset limitations, we applied data augmentation, ReLoRA for efficient training, Continued Pretraining (CPT) for domain knowledge, and Rank-Stabilized LoRA (rsLoRA) for fine-tuning. Supervised Fine-Tuning (SFT) simulated exam scenarios, while Direct Preference Optimization (DPO) refined the model using feedback. The model achieved scores of 72%, 72%, and 84% on IC exam levels P1, P2, and P3, respectively, demonstrating its effectiveness in Thai financial advisory tasks and its potential for specialized applications.
Abstract:Recent advancements in Large Language Models (LLMs) have revealed new capabilities and opportunities across the technological landscape. However, the practicality of very large LLMs is challenged by their high compute cost, which does not justify the benefits given their limited capability compared to humans. While smaller, more practical LLMs have shown potential in financial analysis, though they are not yet fully proficient, as evidenced by their near-passing performance on the Chartered Financial Analyst (CFA) exam. In this work, we present Financial Analyst Extension to our Text Hyperlocally Augmented Large Language Extension (THaLLE), a series of 8B LLMs consistently achieving highest performance on mock CFA exams against models of comparable size. We thoroughly document the fine-tuning techniques used to facilitate future research. Additionally, we introduce the use of Flare CFA, a publicly available dataset for evaluating LLMs as a financial advisor.
Abstract:We introduce "Future You," an interactive, brief, single-session, digital chat intervention designed to improve future self-continuity--the degree of connection an individual feels with a temporally distant future self--a characteristic that is positively related to mental health and wellbeing. Our system allows users to chat with a relatable yet AI-powered virtual version of their future selves that is tuned to their future goals and personal qualities. To make the conversation realistic, the system generates a "synthetic memory"--a unique backstory for each user--that creates a throughline between the user's present age (between 18-30) and their life at age 60. The "Future You" character also adopts the persona of an age-progressed image of the user's present self. After a brief interaction with the "Future You" character, users reported decreased anxiety, and increased future self-continuity. This is the first study successfully demonstrating the use of personalized AI-generated characters to improve users' future self-continuity and wellbeing.