Abstract:Large Language Models (LLMs) excel in general tasks but struggle with domain-specific challenges, such as specialized terminology and localized regulations. Existing financial LLMs, like FinGPT and BloombergGPT, lack support for the Thai financial domain. We developed a Thai Financial LLM using the Investment Consultant (IC) exam dataset from the Stock Exchange of Thailand. To address dataset limitations, we applied data augmentation, ReLoRA for efficient training, Continued Pretraining (CPT) for domain knowledge, and Rank-Stabilized LoRA (rsLoRA) for fine-tuning. Supervised Fine-Tuning (SFT) simulated exam scenarios, while Direct Preference Optimization (DPO) refined the model using feedback. The model achieved scores of 72%, 72%, and 84% on IC exam levels P1, P2, and P3, respectively, demonstrating its effectiveness in Thai financial advisory tasks and its potential for specialized applications.
Abstract:Recent advancements in Large Language Models (LLMs) have revealed new capabilities and opportunities across the technological landscape. However, the practicality of very large LLMs is challenged by their high compute cost, which does not justify the benefits given their limited capability compared to humans. While smaller, more practical LLMs have shown potential in financial analysis, though they are not yet fully proficient, as evidenced by their near-passing performance on the Chartered Financial Analyst (CFA) exam. In this work, we present Financial Analyst Extension to our Text Hyperlocally Augmented Large Language Extension (THaLLE), a series of 8B LLMs consistently achieving highest performance on mock CFA exams against models of comparable size. We thoroughly document the fine-tuning techniques used to facilitate future research. Additionally, we introduce the use of Flare CFA, a publicly available dataset for evaluating LLMs as a financial advisor.
Abstract:Large Language Models (LLMs) often struggle with hallucinations and outdated information. To address this, Information Retrieval (IR) systems can be employed to augment LLMs with up-to-date knowledge. However, existing IR techniques contain deficiencies, posing a performance bottleneck. Given the extensive array of IR systems, combining diverse approaches presents a viable strategy. Nevertheless, prior attempts have yielded restricted efficacy. In this work, we propose an approach that leverages learning-to-rank techniques to combine heterogeneous IR systems. We demonstrate the method on two Retrieval Question Answering (ReQA) tasks. Our empirical findings exhibit a significant performance enhancement, outperforming previous approaches and achieving state-of-the-art results on ReQA SQuAD.