Abstract:This paper introduces an explanation framework designed to enhance the quality of rules in knowledge-based reasoning systems based on dataset-driven insights. The traditional method for rule induction from data typically requires labor-intensive labeling and data-driven learning. This framework provides an alternative and instead allows for the data-driven refinement of existing rules: it generates explanations of rule inferences and leverages human interpretation to refine rules. It leverages four complementary explanation types: trace-based, contextual, contrastive, and counterfactual, providing diverse perspectives for debugging, validating, and ultimately refining rules. By embedding explainability into the reasoning architecture, the framework enables knowledge engineers to address inconsistencies, optimize thresholds, and ensure fairness, transparency, and interpretability in decision-making processes. Its practicality is demonstrated through a use case in finance.
Abstract:Dataset distillation generates a small set of information-rich instances from a large dataset, resulting in reduced storage requirements, privacy or copyright risks, and computational costs for downstream modeling, though much of the research has focused on the image data modality. We study tabular data distillation, which brings in novel challenges such as the inherent feature heterogeneity and the common use of non-differentiable learning models (such as decision tree ensembles and nearest-neighbor predictors). To mitigate these challenges, we present $\texttt{TDColER}$, a tabular data distillation framework via column embeddings-based representation learning. To evaluate this framework, we also present a tabular data distillation benchmark, ${{\sf \small TDBench}}$. Based on an elaborate evaluation on ${{\sf \small TDBench}}$, resulting in 226,890 distilled datasets and 548,880 models trained on them, we demonstrate that $\texttt{TDColER}$ is able to boost the distilled data quality of off-the-shelf distillation schemes by 0.5-143% across 7 different tabular learning models.
Abstract:We present the Differentially Private Blockchain-Based Vertical Federal Learning (DP-BBVFL) algorithm that provides verifiability and privacy guarantees for decentralized applications. DP-BBVFL uses a smart contract to aggregate the feature representations, i.e., the embeddings, from clients transparently. We apply local differential privacy to provide privacy for embeddings stored on a blockchain, hence protecting the original data. We provide the first prototype application of differential privacy with blockchain for vertical federated learning. Our experiments with medical data show that DP-BBVFL achieves high accuracy with a tradeoff in training time due to on-chain aggregation. This innovative fusion of differential privacy and blockchain technology in DP-BBVFL could herald a new era of collaborative and trustworthy machine learning applications across several decentralized application domains.
Abstract:We explore using Large Language Models (LLMs) to generate application code that automates health insurance processes from text-based policies. We target blockchain-based smart contracts as they offer immutability, verifiability, scalability, and a trustless setting: any number of parties can use the smart contracts, and they need not have previously established trust relationships with each other. Our methodology generates outputs at increasing levels of technical detail: (1) textual summaries, (2) declarative decision logic, and (3) smart contract code with unit tests. We ascertain LLMs are good at the task (1), and the structured output is useful to validate tasks (2) and (3). Declarative languages (task 2) are often used to formalize healthcare policies, but their execution on blockchain is non-trivial. Hence, task (3) attempts to directly automate the process using smart contracts. To assess the LLM output, we propose completeness, soundness, clarity, syntax, and functioning code as metrics. Our evaluation employs three health insurance policies (scenarios) with increasing difficulty from Medicare's official booklet. Our evaluation uses GPT-3.5 Turbo, GPT-3.5 Turbo 16K, GPT-4, GPT-4 Turbo and CodeLLaMA. Our findings confirm that LLMs perform quite well in generating textual summaries. Although outputs from tasks (2)-(3) are useful starting points, they require human oversight: in multiple cases, even "runnable" code will not yield sound results; the popularity of the target language affects the output quality; and more complex scenarios still seem a bridge too far. Nevertheless, our experiments demonstrate the promise of LLMs for translating textual process descriptions into smart contracts.
Abstract:We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression and Anxiety Predictor (CoDAP) to predict mental health trends, particularly anxiety and depression, during the COVID-19 pandemic. Our method utilizes a comprehensive dataset, which tracked mental health symptoms weekly over ten weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort of U.S. adults. This period, characterized by a surge in mental health symptoms and conditions, offers a critical context for our analysis. Our focus was to extract and analyze patterns of anxiety and depression through a unique lens of qualitative individual attributes using CoDAP. This model not only predicts patterns of anxiety and depression during the pandemic but also unveils key insights into the interplay of demographic factors, behavioral changes, and social determinants of mental health. These findings contribute to a more nuanced understanding of the complexity of mental health issues in times of global health crises, potentially guiding future early interventions.
Abstract:Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning: How can the output of AI systems be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives.
Abstract:Finding preferences expressed in natural language is an important but challenging task. State-of-the-art(SotA) methods leverage transformer-based models such as BERT, RoBERTa, etc. and graph neural architectures such as graph attention networks. Since Large Language Models (LLMs) are equipped to deal with larger context lengths and have much larger model sizes than the transformer-based model, we investigate their ability to classify comparative text directly. This work aims to serve as a first step towards using LLMs for the CPC task. We design and conduct a set of experiments that format the classification task into an input prompt for the LLM and a methodology to get a fixed-format response that can be automatically evaluated. Comparing performances with existing methods, we see that pre-trained LLMs are able to outperform the previous SotA models with no fine-tuning involved. Our results show that the LLMs can consistently outperform the SotA when the target text is large -- i.e. composed of multiple sentences --, and are still comparable to the SotA performance in shorter text. We also find that few-shot learning yields better performance than zero-shot learning.
Abstract:Limited access to computing resources and training data poses significant challenges for individuals and groups aiming to train and utilize predictive machine learning models. Although numerous publicly available machine learning models exist, they are often unhosted, necessitating end-users to establish their computational infrastructure. Alternatively, these models may only be accessible through paid cloud-based mechanisms, which can prove costly for general public utilization. Moreover, model and data providers require a more streamlined approach to track resource usage and capitalize on subsequent usage by others, both financially and otherwise. An effective mechanism is also lacking to contribute high-quality data for improving model performance. We propose a blockchain-based marketplace called "PredictChain" for predictive machine-learning models to address these issues. This marketplace enables users to upload datasets for training predictive machine learning models, request model training on previously uploaded datasets, or submit queries to trained models. Nodes within the blockchain network, equipped with available computing resources, will operate these models, offering a range of archetype machine learning models with varying characteristics, such as cost, speed, simplicity, power, and cost-effectiveness. This decentralized approach empowers users to develop improved models accessible to the public, promotes data sharing, and reduces reliance on centralized cloud providers.
Abstract:Mental health disorders remain a significant challenge in modern healthcare, with diagnosis and treatment often relying on subjective patient descriptions and past medical history. To address this issue, we propose a personalized mental health tracking and mood prediction system that utilizes patient physiological data collected through personal health devices. Our system leverages a decentralized learning mechanism that combines transfer and federated machine learning concepts using smart contracts, allowing data to remain on users' devices and enabling effective tracking of mental health conditions for psychiatric treatment and management in a privacy-aware and accountable manner. We evaluate our model using a popular mental health dataset that demonstrates promising results. By utilizing connected health systems and machine learning models, our approach offers a novel solution to the challenge of providing psychiatrists with further insight into their patients' mental health outside of traditional office visits.
Abstract:Medical experts may use Artificial Intelligence (AI) systems with greater trust if these are supported by contextual explanations that let the practitioner connect system inferences to their context of use. However, their importance in improving model usage and understanding has not been extensively studied. Hence, we consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state, AI predictions about their risk of complications, and algorithmic explanations supporting the predictions. We explore how relevant information for such dimensions can be extracted from Medical guidelines to answer typical questions from clinical practitioners. We identify this as a question answering (QA) task and employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability. Finally, we study the benefits of contextual explanations by building an end-to-end AI pipeline including data cohorting, AI risk modeling, post-hoc model explanations, and prototyped a visual dashboard to present the combined insights from different context dimensions and data sources, while predicting and identifying the drivers of risk of Chronic Kidney Disease - a common type-2 diabetes comorbidity. All of these steps were performed in engagement with medical experts, including a final evaluation of the dashboard results by an expert medical panel. We show that LLMs, in particular BERT and SciBERT, can be readily deployed to extract some relevant explanations to support clinical usage. To understand the value-add of the contextual explanations, the expert panel evaluated these regarding actionable insights in the relevant clinical setting. Overall, our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.