Abstract:This paper introduces an explanation framework designed to enhance the quality of rules in knowledge-based reasoning systems based on dataset-driven insights. The traditional method for rule induction from data typically requires labor-intensive labeling and data-driven learning. This framework provides an alternative and instead allows for the data-driven refinement of existing rules: it generates explanations of rule inferences and leverages human interpretation to refine rules. It leverages four complementary explanation types: trace-based, contextual, contrastive, and counterfactual, providing diverse perspectives for debugging, validating, and ultimately refining rules. By embedding explainability into the reasoning architecture, the framework enables knowledge engineers to address inconsistencies, optimize thresholds, and ensure fairness, transparency, and interpretability in decision-making processes. Its practicality is demonstrated through a use case in finance.
Abstract:We explore using Large Language Models (LLMs) to generate application code that automates health insurance processes from text-based policies. We target blockchain-based smart contracts as they offer immutability, verifiability, scalability, and a trustless setting: any number of parties can use the smart contracts, and they need not have previously established trust relationships with each other. Our methodology generates outputs at increasing levels of technical detail: (1) textual summaries, (2) declarative decision logic, and (3) smart contract code with unit tests. We ascertain LLMs are good at the task (1), and the structured output is useful to validate tasks (2) and (3). Declarative languages (task 2) are often used to formalize healthcare policies, but their execution on blockchain is non-trivial. Hence, task (3) attempts to directly automate the process using smart contracts. To assess the LLM output, we propose completeness, soundness, clarity, syntax, and functioning code as metrics. Our evaluation employs three health insurance policies (scenarios) with increasing difficulty from Medicare's official booklet. Our evaluation uses GPT-3.5 Turbo, GPT-3.5 Turbo 16K, GPT-4, GPT-4 Turbo and CodeLLaMA. Our findings confirm that LLMs perform quite well in generating textual summaries. Although outputs from tasks (2)-(3) are useful starting points, they require human oversight: in multiple cases, even "runnable" code will not yield sound results; the popularity of the target language affects the output quality; and more complex scenarios still seem a bridge too far. Nevertheless, our experiments demonstrate the promise of LLMs for translating textual process descriptions into smart contracts.